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What can ideas from causality do for ML?
• Real-world ML needs to deal with:


• Biased data (fairness, selection bias, generalization)


• Heterogeneous data, small samples, missing/corrupted data, not iid


• Actionable insights (decisions cannot be made on correlations)


• Causal inference can help with some of these questions:


• Systematic data fusion and reuse with biased data, heterogenous, not iid data 


• A systematic way to extract actionable insights 

• “Full” causality can be not necessary or too expensive -> causality-inspired ML
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• Real-world ML needs to deal with:


• Biased data (fairness, selection bias, generalization)


• Heterogeneous data, small samples, missing/corrupted data, not iid


• Actionable insights (decisions cannot be made on correlations)


• Causal inference can help with some of these questions:


• Systematic data fusion and reuse with biased data, heterogenous, not iid data 


• A systematic way to extract actionable insights 

• “Full” causality can be not necessary or too expensive -> causality-inspired ML

In this talk: example in 
domain adaptation, but lots of 

related work
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Causality allows us to reason systematically 
about distribution shifts, e.g. through graphs

and many more....

Even if unknown

Even if we are in a 
zero-shot setting



• Supervised multi-source domain adaptation


• Estimate  in Y = (X1, X2, X3, X4) from source domains and few labels in 
target domain

̂f ̂f

Causality inspired ML: what can causality do for ML? ANC seminar - 1st March 2022

A description of domain adaptation tasks:

X1 X2 X3 X4 Y

1200 1000 1500 9 -0.1
1201 800 1500 8 ?
1195 200 1499 7 ?
…. …. …. …. ….

2000 600 3000 7 -0,21
2190 450 3000 8 -0,16
2000 200 2999 8 -0,16
…. …. …. …. ….
1200 1000 1500 9 -0,17
1201 800 1500 10 -0,14
1195 200 1499 10 -0,07
1340 900 1498 …. -0,14

Causality & DL - Causality-inspired ML

{Source domains

{ Target domain



• Unsupervised multi-source domain adaptation


• Estimate  in Y = (X1, X2, X3, X4) from source domains and by exploiting 
the knowledge of the change from the unlabelled data in target

̂f ̂f
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A description of domain adaptation tasks:
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…. …. …. …. ….
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• Domain generalisation: required to work under any intervention


• Estimate  in Y = (X1, X2, X3, X4) from source domains, no idea about 
what happens in the target

̂f ̂f

Causality inspired ML: what can causality do for ML? ANC seminar - 1st March 2022

A description of domain adaptation tasks:

X1 X2 X3 X4 Y

? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
…. …. …. …. ….

2000 600 3000 7 -0,21
2190 450 3000 8 -0,16
2000 200 2999 8 -0,16
…. …. …. …. ….
1200 1000 1500 9 -0,17
1201 800 1500 10 -0,14
1195 200 1499 10 -0,07
1340 900 1498 …. -0,14

Causality & DL - Causality-inspired ML

No data in 
target

{Source domains

{ Target domain



Domain adaptation from a graphical perspective

[Zhang et al. 2013] 
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Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0
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Domain adaptation from a graphical perspective 
[Zhang et al. 2013] 

• Add a variable D to represent the domain  

• Consider the data as coming from a single distribution P(X,Y, D)

X1 Y X2D

• We can represent P(X,Y, D) with a 
(possibly unknown) causal graph

X1 X2 Y
Gene A 3,1 2 ?
Gene A 3,2 3 ?
Gene A 4 2 ?
Gene A 3,2 3 ?

D X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0



Structural causal model - domain/environment variable
ANC seminar - 1st March 2022

ϵ1, ϵ2, ϵ3, ϵY ∼ 𝒩(0,1)
X1 = 10 + ϵ1

Y = 3X1 + ϵY

X2 = − 2Y + ϵ2

X3 = 2Y + 0.1ϵ3
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Domain adaptation example
ANC seminar - 1st March 2022

ϵ1, ϵ2, ϵ3, ϵY ∼ 𝒩(0,1)
X1 = 10 + ϵ1

Y = 3X1 + ϵY

X2 = − 2Y + ϵ2
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Domain adaptation example - data
ANC seminar - 1st March 2022

D = 0 D = 1 D = 2
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Target domainSource domains



Separating features intuition - X1
ANC seminar - 1st March 2022



Separating features intuition - X1
ANC seminar - 1st March 2022



Separating features intuition - X1
ANC seminar - 1st March 2022

d-separation [Pearl 1988 allows us to read conditional 
independences from a Bayesian network 
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Causality allows us to reason systematically 
about distribution shifts, e.g. through graphs

and many more....



Common misconceptions: 1. An invariant feature 
need not be causal

X1 Y X2D
Y ⊥⊥ D |X1

• Y|X1,X2 is invariant  invariant features are not necessarily parents of Y⟹

Y ⊥⊥ D |X1, X2

Invariant feature across “many different datasets” is not enough in general to find 
causal parents, need more assumptions
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X1 Y X2D
Y ⊥⊥ D |X1

• Y|X1,X2 is invariant  invariant features are not necessarily parents of Y⟹

Y ⊥⊥ D |X1, X2

Invariant feature across “many different datasets” is not enough in general to find 
causal parents, need more assumptions

• Invariant Causal Prediction [Peters et al. 2016] under causal sufficiency:

S* = ⋂
Y⊥⊥D|S

S ⊆ Pa(Y) {X1, X2} ∩ {X1} = {X1}



Common misconception 2: Parents are not 
enough under latent confounding

X1 YX2D

Y ⊥⊥ D |X1

Y /⊥⊥ D |X2

Y ⊥⊥ D |X1, X2

• Y|X1 is invariant, Y|X2 is not

Even if we knew all the parents, under latent confounding this wouldn’t 
necessarily help transfer

H



Common misconception 2: Parents are not 
enough under latent confounding

X1 YX2D

Y ⊥⊥ D |X1

Y /⊥⊥ D |X2

Y ⊥⊥ D |X1, X2

• Y|X1 is invariant, Y|X2 is not

Even if we knew all the parents, under latent confounding this wouldn’t 
necessarily help transfer

• Conclusion: causality (e.g. using the causal parents, learning the 
complete causal graph) is neither necessary or sufficient* for transfer, 
what we care about are conditional independences/d-separations

H
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Desiderata for a causality inspired domain 
adaptation method

• X, Y and changes can be represented by an unknown causal graph


• Allow for latent confounders  

• Avoid parametric assumptions, allow for heterogeneous effects across 
domains


• Instead of modeling changes between each domain, distinguish the 
change between the mixture of sources and the target



Causal domain adaptation problem 
[Magliacane et al. 2018] 

X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0

X1 X2 Y
Gene A 3,1 2 1
Gene A 3,2 3 1
Gene A 4 1 1
Gene A 3,2 3 0

X1 X2 Y
Gene B 0,2 1 ?
Gene B 0,3 1 ?
Gene B 0,3 2 ?
Gene B 0,4 1 ?

• Unsupervised multi-source domain adaptation


• We interpret the change in the target domain as a soft intervention 

• We assume Y cannot be intervened upon directly - P(Y) can still change
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• Unsupervised multi-source domain adaptation


• We interpret the change in the target domain as a soft intervention 

• We assume Y cannot be intervened upon directly - P(Y) can still change

Multiple context variable 
C1, C2 …



Causal domain adaptation problem 
[Magliacane et al. 2018] 

X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0

X1 X2 Y
Gene A 3,1 2 1
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Gene A 4 1 1
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• Unsupervised multi-source domain adaptation


• We interpret the change in the target domain as a soft intervention 

• We assume Y cannot be intervened upon directly - P(Y) can still change

C1 = 1



Causal domain adaptation problem 
[Magliacane et al. 2018] 

X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0

X1 X2 Y
Gene A 3,1 2 1
Gene A 3,2 3 1
Gene A 4 1 1
Gene A 3,2 3 0

X1 X2 Y
Gene B 0,2 1 ?
Gene B 0,3 1 ?
Gene B 0,3 2 ?
Gene B 0,4 1 ?

• Unsupervised multi-source domain adaptation


• We interpret the change in the target domain as a soft intervention 

• We assume Y cannot be intervened upon directly - P(Y) can still change

Now the graph is unknown!



Joint Causal Inference [Mooij et al. 2020]
• We represent jointly different distributions as an unknown single causal graph

X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0X1 X2 Y

Gene A 3,1 2 1
Gene A 3,2 3 1
Gene A 4 1 1
Gene A 3,2 3 0X1 X2 Y

Gene B 0,2 1 1

Gene B 0,3 1 0
Gene B 0,3 2 1

Gene B 0,4 1 1




C1 C2 X1 X2 Y
0 1 0,2 1 1

0 1 0,3 1 0
0 1 0,3 2 1

0 1 0,4 1 1


C1 C2 X1 X2 Y
1 0 3,1 2 1
1 0 3,2 3 1
1 0 4 1 1
1 0 3,2 3 0

Joint Causal Inference [Mooij et al. 2020]
• We represent jointly different distributions as an unknown single causal graph


• Instead of a single domain variable, we add several context variables so we 
can disentangle changes in distribution across the datasets

X1 X2 Y
Normal 0,1 2 0
Normal 0,2 3 0
Normal 1,1 2 1
Normal 0,1 3 0X1 X2 Y

Gene A 3,1 2 1
Gene A 3,2 3 1
Gene A 4 1 1
Gene A 3,2 3 0X1 X2 Y

Gene B 0,2 1 1

Gene B 0,3 1 0
Gene B 0,3 2 1

Gene B 0,4 1 1


C1 C2 X1 X2 Y
0 0 0,1 2 0
0 0 0,2 3 0
0 0 1,1 2 1
0 0 0,1 3 0



Joint Causal Inference [Mooij et al. 2020]
• We can learn an equivalence class of the unknown single causal graph 

using conditional independence tests on systematically pooled data 

• We treat context variables as normal variables that we know are uncaused 

X1 Y X2

C1C2C1 ⊥⊥ Y |X1

X1 ⊥⊥ X2 |Y, C2

X1 /⊥⊥ X2 |Y

…C1 C2 X1 X2 Y
0 1 0,2 0 0
0 1 0,3 0 1
0 1 0,3 1 0

C1 C2 X1 X2 Y
1 0 3,1 2 1
1 0 3,2 3 1
1 0 4 3 1

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1



Causal domain adaptation: separating features

• Separating features: sets of features that d-separate Y from the context 
variable C1 representing the target domain

• {X1} is a separating feature set, {X1, X2} could lead to arbitrary large error

X1 Y X2

C1C2

Aka stable features, 
invariant features etc.
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What if the causal graph is unknown? 

• Idea: we could test the conditional independence in the data 
Y ⊥⊥ C1 |X1? Y ⊥⊥ C1 |X2?

• Problem: Y is always missing when C1=1, so we cannot test these

C1 C2 X1 X2 Y
0 1 0,2 0 0
0 1 0,3 0 1
0 1 0,3 1 0

C1 C2 X1 X2 Y
1 0 3,1 2 ?
1 0 3,2 3 ?
1 0 4 3 ?

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1

Y ⊥⊥ C2 |{X1, C1 = 0} ⟹ Y ⊥⊥ C1 |X1

Idea: Invariant features in source domains are 
also separating in the target domain
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What if the causal graph is unknown? 

• Idea: we could test the conditional independence in the data 
Y ⊥⊥ C1 |X1? Y ⊥⊥ C1 |X2?

• Problem: Y is always missing when C1=1, so we cannot test these

C1 C2 X1 X2 Y
0 1 0,2 0 0
0 1 0,3 0 1
0 1 0,3 1 0

C1 C2 X1 X2 Y
1 0 3,1 2 ?
1 0 3,2 3 ?
1 0 4 3 ?

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1

Y ⊥⊥ C2 |{X1, C1 = 0} ⟹ Y ⊥⊥ C1 |X1

Idea: Invariant features in source domains are 
also separating in the target domain

This is a strong assumption



What if the causal graph is unknown? 

• Idea: we could test the conditional independence in the data 
Y ⊥⊥ C1 |X1? Y ⊥⊥ C1 |X2?

• Problem: Y is always missing when C1=1, so we cannot test these

C1 C2 X1 X2 Y
0 1 0,2 0 0
0 1 0,3 0 1
0 1 0,3 1 0

C1 C2 X1 X2 Y
1 0 3,1 2 ?
1 0 3,2 3 ?
1 0 4 3 ?

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1

X1 /⊥⊥ X2

X1 /⊥⊥ C1

X1 ⊥⊥ X2 |Y, C1 = 0
X1 /⊥⊥ X2 |C1

…
• Idea: Can we use all other in/dependences?



Assumptions [Magliacane et al. 2018] 
• We assume that there exists an acyclic causal graph that fits all the data 

(Joint Causal Inference) 

• We assume Y cannot be intervened upon directly 



Assumptions [Magliacane et al. 2018] 

A ⊥⊥ D |B, Y, C1 = 0 ⟹ A ⊥⊥ D |B, Y, C1 = 1
Y ⊥⊥ A |B, C1 = 0 ⟹ Y ⊥⊥ A |B, C1 = 1A, D, B ⊂ V∖{Y, C1}

• We assume that there exists an acyclic causal graph that fits all the data 
(Joint Causal Inference) 

• We assume Y cannot be intervened upon directly  

• We assume no extra dependences involving Y in target domain C1=1

There can be extra 
independences in the target



A small example that we proved by hand

X1 Y X2

C1C2

Y ⊥⊥ C2 |X1, C1 = 0

Y /⊥⊥ C2 |C1 = 0

X2 ⊥⊥ C2 |Y, C1 = 0

Y ⊥⊥ C1 |X1

• We can prove untestable separating test without reconstructing the graph:

Perform allowed CI tests All possible compatible graphs

True in all possible compatible graphs

C1 C2 X1 X2 Y
0 1 0,2 0 0
0 1 0,3 0 1
0 1 0,3 1 0

C1 C2 X1 X2 Y
1 0 3,1 2 ?
1 0 3,2 3 ?
1 0 4 3 ?

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1



Logic encoding of d-separation 
[Hyttinen et al. 2014]

Inferring separating sets without enumerating all 
possible causal graphs

     Query Y ⊥⊥ C1 |X1?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

?

Y ⊥⊥ C1 |X1

Y /⊥⊥ C1 |X1
Theorem prover

Not identifiable

Provably separating

Provably not separating



A simple causal feature selection algorithm

     Standard feature 
selection

List of combinations of features ordered 
by source domain loss in predicting Y


L=({X1, C2}, {X1, X2, C2} , {X1, X2}, …)

Source domains data
C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1
0 1 3,1 2 1
0 1 3,2 3 1
0 1 4 3 1
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A simple causal feature selection algorithm

Logic encoding of d-separation 
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     Query Y ⊥⊥ C1 |S?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

Y ⊥⊥ C1 |S

Theorem prover

Provably separating

     Standard feature 
selection

List of combinations of features ordered 
by source domain loss in predicting Y


L=({X1, C2}, {X1, X2, C2} , {X1, X2}, …)

Source domains data
C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
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A simple causal feature selection algorithm

Logic encoding of d-separation 
[Hyttinen et al. 2014]

     Query Y ⊥⊥ C1 |S?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

?
Y ⊥⊥ C1 |S

Y /⊥⊥ C1 |S

Theorem prover Not identifiable

Provably separating

Provably not separating

     Standard feature 
selection

List of combinations of features ordered 
by source domain loss in predicting Y


L=({X1, C2}, {X1, X2, C2} , {X1, X2}, …)

Source domains data
C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1
0 1 3,1 2 1
0 1 3,2 3 1
0 1 4 3 1

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1
0 1 3,1 2 1
0 1 3,2 3 1
0 1 4 3 1
1 0 0,2 0 ?
1 0 0,3 0 ?
1 0 0,3 1 ?

All data (including target)

Learn (S) 
on source 
domains

̂f

Select new set S
Iterate until empty



A simple causal feature selection algorithm

Logic encoding of d-separation 
[Hyttinen et al. 2014]

     Query Y ⊥⊥ C1 |S?

All testable conditional 
independences from data

Y ⊥⊥ C2 |X1, C1 = 0
X1 ⊥⊥ X3 |X4

X2 ⊥⊥ C2 |Y, C1 = 0
…

Assumptions

?
Y ⊥⊥ C1 |S

Y /⊥⊥ C1 |S

Theorem prover Not identifiable

Provably separating

Provably not separating

     Standard feature 
selection

List of combinations of features ordered 
by source domain loss in predicting Y


L=({X1, C2}, {X1, X2, C2} , {X1, X2}, …)

Source domains data
C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1
0 1 3,1 2 1
0 1 3,2 3 1
0 1 4 3 1

C1 C2 X1 X2 Y
0 0 0,1 1 0
0 0 0,2 1 0
0 0 1,1 2 1
0 1 3,1 2 1
0 1 3,2 3 1
0 1 4 3 1
1 0 0,2 0 ?
1 0 0,3 0 ?
1 0 0,3 1 ?

All data (including target)

Learn (S) 
on source 
domains

̂f

Select new set S

C1 C2 X1 X2 Y
0 1 0,2 0 ?
0 1 0,3 0 ?
0 1 0,3 1 ?

Bounded 
generalisation error



Desiderata for a causality inspired domain 
adaptation method

• X, Y and changes can be represented by an unknown causal graph


• Allow for latent confounders  

• Avoid parametric assumptions, allow for heterogeneous effects across domains


• Instead of modeling changes between each domain, distinguish the change 
between the mixture of sources and the target 

• Avoid common assumption that if Y| T(X) is invariant across multiple source 
domains, then Y|T(X) is invariant also in the target domain 


• Only search for invariant features with respect to current target task

Thanks to Joint 
Causal Inference 
[Mooij et al 2020]



Desiderata for a causality inspired domain 
adaptation method

• X, Y and changes can be represented by an unknown causal graph


• Allow for latent confounders  

• Avoid parametric assumptions, allow for heterogeneous effects across domains


• Instead of modeling changes between each domain, distinguish the change 
between the mixture of sources and the target 

• Avoid common assumption that if Y| T(X) is invariant across multiple source 
domains, then Y|T(X) is invariant also in the target domain 


• Only search for invariant features with respect to current target task

No need to find causal graph or 
equivalence class, we only care about 

conditional independences/d-separations



Limitations and future work
• Potentially too conservative: Separating sets may exist that are not provably 

separating 

• Extension: can we use active learning/intervention design to decide 
most informative interventions?


• Scalability: using (error-correcting) logic-based encoding with all CI tests as 
input scales to tens of vars (including context variables) 


• Extension: use approximate algorithms, combine with low dim 
representations


• Can we apply this to multi-task RL (e.g. in factored MDPs)?



AdaRL: What, Where, and How to Adapt in Transfer RL

https://arxiv.org/abs/2107.02729

Simplifying 
assumption: no 
new edges in 
target domain

ICLR 2022



FansRL: Factored Adaptation for Non-Stationary Reinforcement Learning

• The latent change factors are not constant anymore and they model non-
stationarity

https://arxiv.org/abs/2203.16582

Non-stationary environments (wind changes)
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Change factors follow a Markov process:

- Discrete/abrupt changes

- Continuous/smooth changes

Non-stationary rewards (target changes)

NeurIPS 2022



Conclusions
• D-separation [Pearl 1988] is a principled way to reason about invariances and 

distribution shift, allowing us to avoid common mistakes 

• Not a new observation, known since [Schoelkopf et al 2012, Zhang et al. 2013]


• This is true even with:


• Unknown causal graphs, Missing data/zero-shot settings 

• Often we do not need to reconstruct the causal graph, we only need to infer 
missing conditional independences 


• In domain adaptation, in general we cannot assume that what works in the 
source domains will work in the target
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• D-separation [Pearl 1988] is a principled way to reason about invariances and 

distribution shift, allowing us to avoid common mistakes 

• Not a new observation, known since [Schoelkopf et al 2012, Zhang et al. 2013]


• This is true even with:


• Unknown causal graphs, Missing data/zero-shot settings


• Often we do not need to reconstruct the causal graph, we only need to infer 
missing conditional independences 


• In domain adaptation, in general we cannot assume that what works in the 
source domains will work in the target



Thanks! Questions?

(joint work with Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris Mooij, 

Biwei Huang, Fan Feng, Chaochao Lu and Kun Zhang) 



