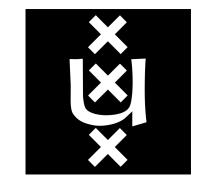


Causality-inspired ML: what can causality do for ML?

The domain adaptation case

Sara Magliacane University of Amsterdam

MIT-IBM Watson Al Lab



- Real-world ML needs to deal with:
 - Biased data (fairness, selection bias, generalization)
 - Heterogeneous data, small samples, missing/corrupted data, not iid
 - Actionable insights (decisions cannot be made on correlations)

- Real-world ML needs to deal with:
 - Biased data (fairness, selection bias, generalization)
 - Heterogeneous data, small samples, missing/corrupted data, not iid
 - Actionable insights (decisions cannot be made on correlations)
- Causal inference can help with some of these questions:
 - Systematic data fusion and reuse with biased data, heterogenous, not iid data
 - A systematic way to extract actionable insights

- Real-world ML needs to deal with:
 - Biased data (fairness, selection bias, generalization)
 - Heterogeneous data, small samples, missing/corrupted data, not iid
 - Actionable insights (decisions cannot be made on correlations)
- Causal inference can help with some of these questions:

graph

- A systematic way to extract actionable insights
- "Full" causality can be not necessary or too expensive ->

- Real-world ML needs to deal with:
 - Biased data (fairness, selection bias, generalization)
 - Heterogeneous data, small samples, missing/corrupted data, not iid
 - Actionable insights (decisions cannot be made on correlations)
- Causal inference can help with some of these questions:
 - Systematic data fusion and reuse with biased data, heterogenous, not iid data
 - A systematic way to extract actionable insights
- "Full" causality can be not necessary or too expensive -> Gausality Inspired

- Real-world ML needs to deal with:
 - Biased data (fairness, selection bias, generalization)
 - Heterogeneous data, small samples, missing/corrupted data, not iid
 - Actionable insights (decisions cannot be made on correlations)
- Causal inference can help with some of these quantities
 - Systematic data fusion and reus domain adaptation, but lots of related work
 - A systematic way to extract actionable many
- "Full" causality can be not necessary or too expensive -> Gausality Inspired

- Transfer learning:
 - How can I predict what happens when the distribution changes?

- Transfer learning:
 - How can I predict what happens when the distribution changes?

- Transfer learning:
 - How can I predict what happens when the distribution changes?

- Causal inference:
 - How can I predict what happens when the distribution changes after an intervention?
 - Perfect intervention: do-calculus [Pearl, 2009]
 - X is independent of its parents
 - Soft intervention on X:
 - Change of P(X) parents)

Transfer learning:

 How can I predict what ha when the distribution chan

Very general - can model also changes in distribution that are not from "real" interventions

[Pe 1, 2009]

- Soft intervention on X:
 - Change of P(X| parents)

Transfer learning:

How can I predict what ha when the distribution chan

Changes in company of the changes in the chang

Very general - can model also changes in distribution that are not from "real" interventions

[Pe 1, 2009]

X is independent of its parents

- Soft intervention on X:
 - Change of P(X| parents)

Not a new idea!

On Causal and Anticausal Learning

ICML 2012

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang

FIRST.LAST@TUE.MPG.DE

Max Planck Institute for Intelligent Systems, Spemannstrasse, 72076 Tübingen, Germany

Joris Mooij

J.MOOIJ@CS.RU.NL

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Abstract

We consider the problem of function estimation in the case where an underlying causal model can be inferred. This has implications for popular scenarios such as covariate shift, concept drift, transfer learning and semi-supervised learning. We argue that causal knowledge may facilitate some approaches for a given problem, and rule out others. In particular, we formulate a hypothesis for when semi-supervised learning can help, and corroborate it with empirical results.

for causal inference in the machine learning community.

An example illustrating the difference between the statistical and the causal point of view is the correlation between the frequency of storks and the human birth rate (Matthews, 2000). We may be able to train a good predictor of the birth rate which uses the frequency of storks (along with other features) as an input. However, if politicians asked us whether one could boost the birth rate by increasing the number of storks, we would have to tell them that this kind of *intervention* is not covered by the standard i.i.d. assumption of statistical learning. In practice, however, interventions can be relevant, distributions may shift over time, and we might want to combine data recorded under different

Causality allows us to reason systematically about distribution shifts

On Causal and Anticausal Learning

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang FIRST.LAST@TUE.MPG.DE Max Planck Institute for Intelligent Systems, Spemannstrasse, 72076 Tübingen, Germany

Joris Mooij J.MOOIJ@CS.RU.NL

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

J. R. Statist. Soc. B (2016) 78, Part 5, pp. 947-1012

Causal inference by using invariant prediction: identification and confidence intervals

Jonas Peters

Max Planck Institute for Intelligent Systems, Tübingen, Germany, and Eidgenössiche Technische Hochschule Zürich, Switzerland

and Peter Bühlmann and Nicolai Meinshausen Eidgenössiche Technische Hochschule Zürich, Switzerland

Domain Adaptation as a Problem of Inference on Graphical Models

Kun Zhang^{1*}, Mingming Gong^{2*}, Petar Stojanov³ Biwei Huang¹, Qingsong Liu⁴, Clark Glymour¹

Department of philosophy, Carnegie Mellon University ² School of Mathematics and Statistics, University of Melbourne ³ Computer Science Department, Carnegie Mellon University, ⁴ Unisound AI Lab kunz1@cmu.edu, mingming.gong@unimelb.edu.au, liuqingsong@unisound.com {pstojano, biweih, cg09}@andrew.cmu.edu

Anchor regression: heterogeneous data meet causality

Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann and Jonas Peters

Invariant Risk Minimization

Invariant Models for Causal Transfer Learning

Mateo Rojas-Carulla

Max Planck Institute for Intelligent Systems

Tübingen, Germany

Department of Engineering Univ. of Cambridge, United Kingdom

Bernhard Schölkopf

Max Planck Institute for Intelligent Systems Tübingen, Germany

Richard Turner

Department of Engineering Univ. of Cambridge, United Kingdom

Jonas Peters^{*}

Department of Mathematical Sciences Univ. of Copenhagen, Denmark

JONAS.PETERS@MATH.KU.DK

MR597@CAM.AC.UK

BS@TUEBINGEN.MPG.DE

RET26@CAM.AC.UK

Invariance, Causality and Robustness

2018 Neyman Lecture *

Peter Bühlmann Seminar for Statistics, ETH Zürich

Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests

Victor Veitch^{1,2}, Alexander D'Amour¹, Steve Yadlowsky¹, and Jacob Eisenstein¹

> ¹Google Research ²University of Chicago

Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions

Sara Magliacane

IBM Research* sara.magliacane@gmail.com Thijs van Ommen

University of Amsterdam thijsvanommen@gmail.com

Tom Claassen

Radboud University Nijmegen tomc@cs.ru.nl

Stephan Bongers

University of Amsterdam

Philip Versteeg University of Amsterdam

p.j.j.p.versteeg@uva.nl

Joris M. Mooij

srbongers@gmail.com

University of Amsterdam j.m.mooij@uva.nl

A Causal View on Robustness of Neural Networks

Cheng Zhang

Microsoft Research Cheng.Zhang@microsoft.com

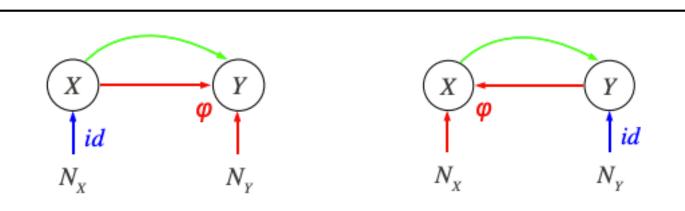
Kun Zhang Yingzhen Li * Carnegie Mellon University Microsoft Research kunz1@cmu.edu Yingzhen.Li@microsoft.com

and many many more....

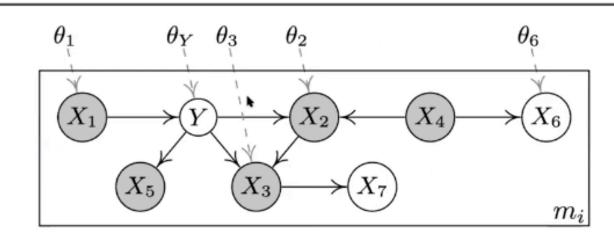
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, David Lopez-Paz

Causality allows us to reason systematically about distribution shifts, e.g. through graphs

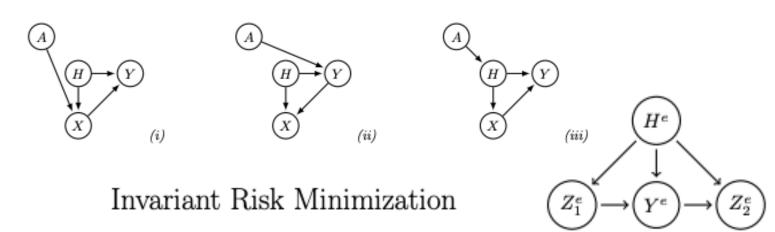
On Causal and Anticausal Learning



Domain Adaptation as a Problem of Inference on Graphical Models

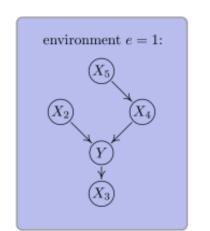


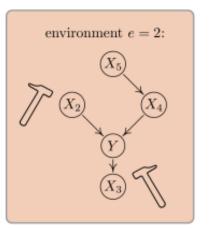
Anchor regression: heterogeneous data meet causality

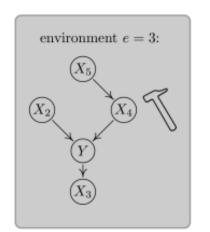


J. R. Statist. Soc. B (2016) 78, Part 5, pp. 947–1012

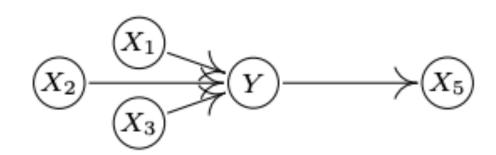
Causal inference by using invariant prediction: identification and confidence intervals



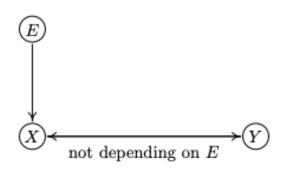




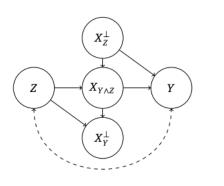
Invariant Models for Causal Transfer Learning

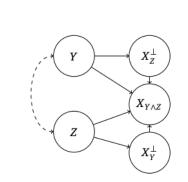


Invariance, Causality and Robustness

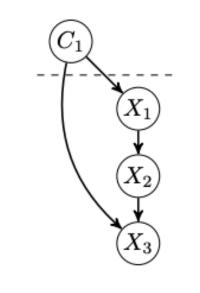


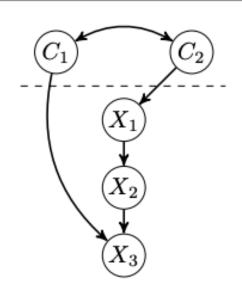
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests



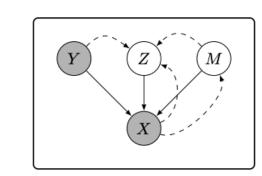


Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions





A Causal View on Robustness of Neural Networks



and many more....

Causality allows us to reason systematically about distribution shifts, e.g. through graphs

On Causal and Anticausal Learning

Learning

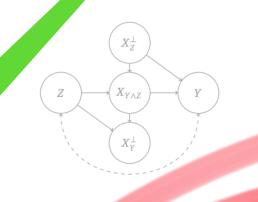
J. R. Statist. Soc. B (2016) **78**, Part 5, pp. 947–1012

Even if unknown

asing invariant prediction:

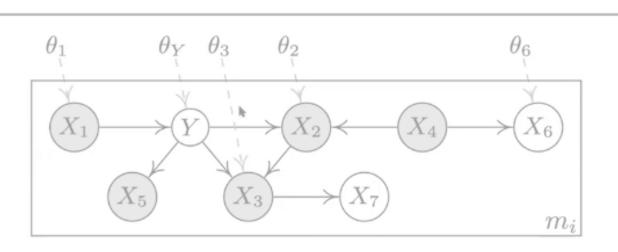
at e = 2: X_{5} Y X_{4} Y X_{3}

Counterfactual Levariance to Spurious Correlations: Why and How to Pass Stress Tests

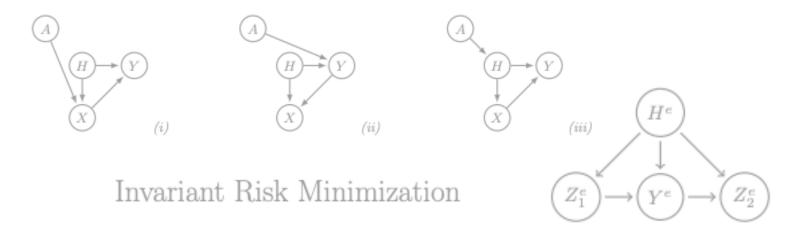




Domain Adaptation as a Problem of Inference on Graphical Models



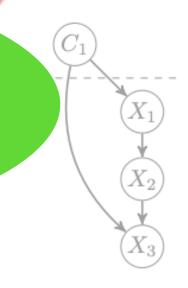
Anchor regression: heterogeneous data meet causality

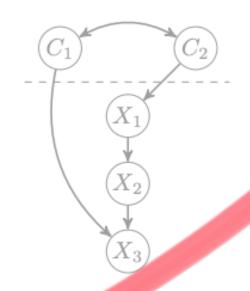


Even if we are in a zero-shot setting

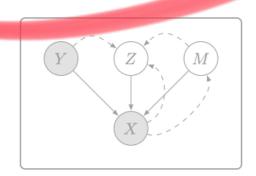
Invariance, Causality and Robustness

Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions





A Causal View on Robustness of Neural Networks



and many more....

A description of domain adaptation tasks:

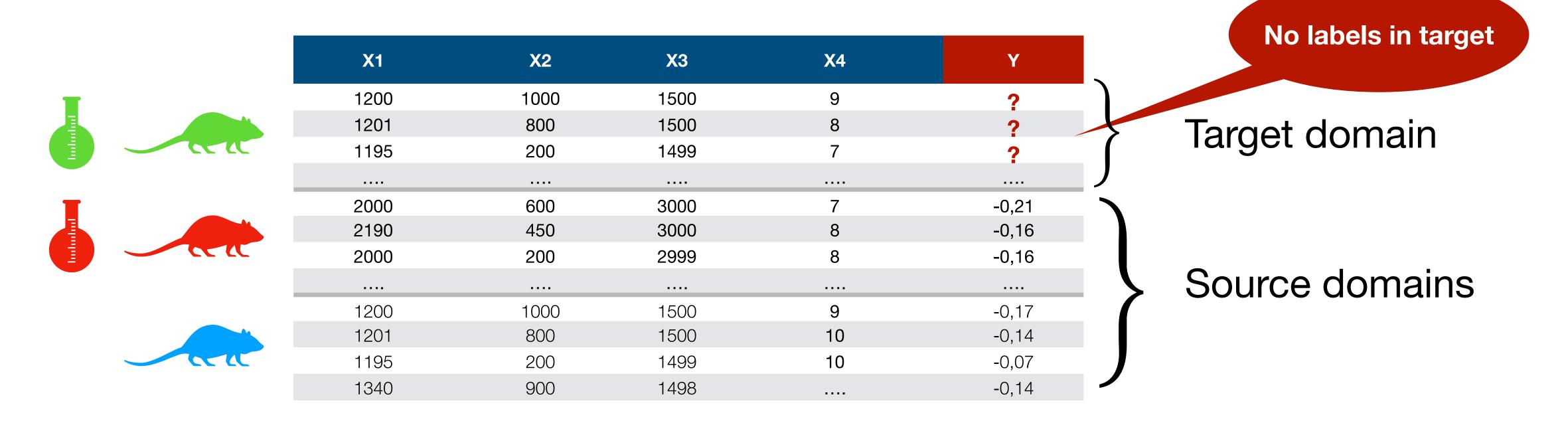
Supervised multi-source domain adaptation

X1	X2	Х3	X4	Y		
1200	1000	1500	9	-0.1		
1201	800	1500	8	?	\	Target domain
1195	200	1499	7	?		raiget domain
					J	
2000	600	3000	7	-0,21		
2190	450	3000	8	-0,16		
2000	200	2999	8	-0,16		
						Source domains
1200	1000	1500	9	-0,17		
1201	800	1500	10	-0,14		
1195	200	1499	10	-0,07	J	
1340	900	1498		-0,14		

• Estimate \hat{f} in Y = \hat{f} (X1, X2, X3, X4) from source domains and few labels in target domain

A description of domain adaptation tasks:

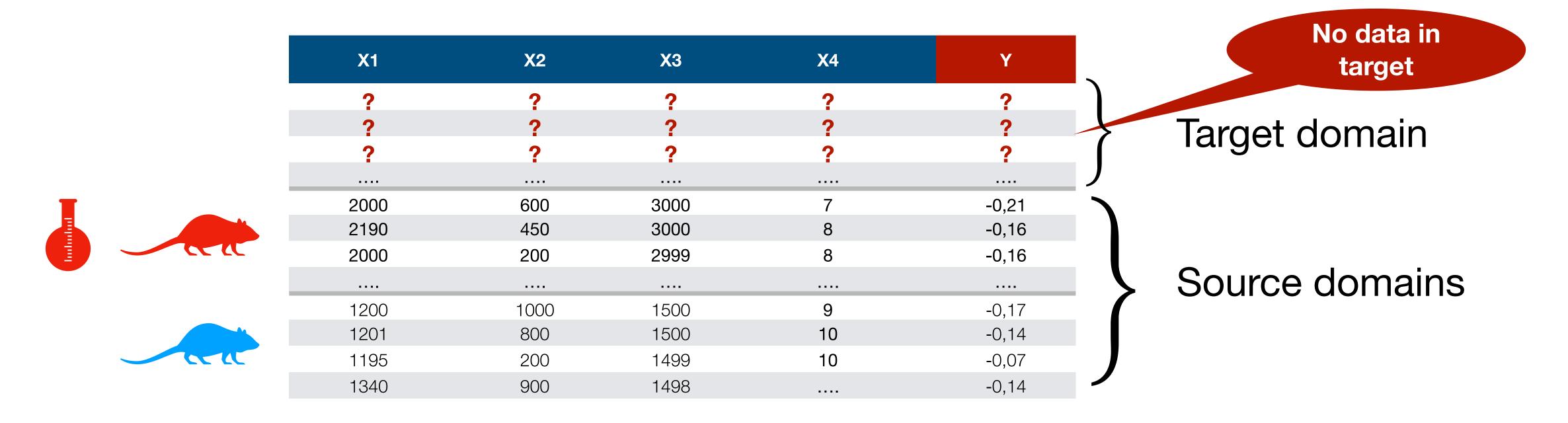
Unsupervised multi-source domain adaptation



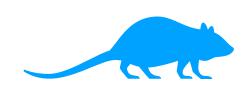
• Estimate \hat{f} in Y = \hat{f} (X1, X2, X3, X4) from source domains and by exploiting the knowledge of the change from the unlabelled data in target

A description of domain adaptation tasks:

Domain generalisation: required to work under any intervention

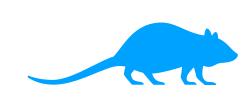


• Estimate \hat{f} in Y = \hat{f} (X1, X2, X3, X4) from source domains, no idea about what happens in the target



	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0

	X1	X2	Y
Gene A	3,1	2	?
Gene A	3,2	3	?
Gene A	4	2	?
Gene A	3,2	3	?



D	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0



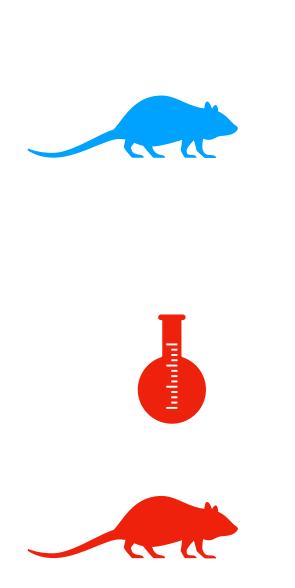
D	X1	X2	Y
Gene A	3,1	2	?
Gene A	3,2	3	?
Gene A	4	2	?
Gene A	3,2	3	?

Add a variable D to represent the domain

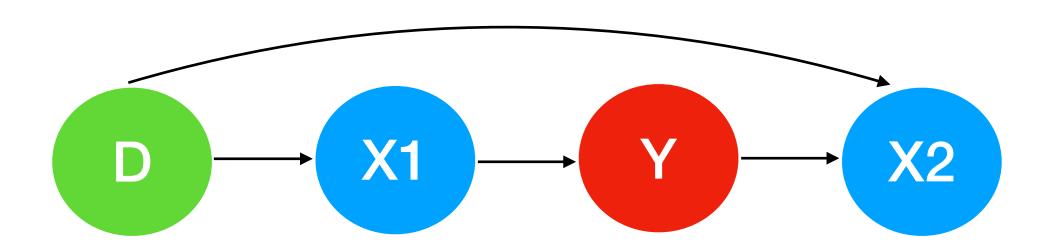
Imfinifini

D	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0
Gene A	3,1	2	?
Gene A	3,2	3	?
Gene A	4	2	?
Gene A	3,2	3	?

- Add a variable D to represent the domain
- Consider the data as coming from a single distribution P(X,Y, D)



D	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0
Gene A	3,1	2	?
Gene A	3,2	3	?
Gene A	4	2	?
Gene A	3,2	3	?



 We can represent P(X,Y, D) with a (possibly unknown) causal graph

- Add a variable D to represent the domain
- Consider the data as coming from a single distribution P(X,Y, D)

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \\ X_2 = -2Y + \epsilon_2 \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases}$$
$$X_2 = -2Y + \epsilon_2$$
$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases}$$
$$X_2 = 1$$
$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases}$$
$$X_2 = 10Y + \epsilon_Y$$
$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} D = 0$$

$$\begin{cases} X_2 = -2Y + \epsilon_2 \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} D = 1$$

$$X_2 = 1$$

$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases}$$

$$X_2 = 10Y + \epsilon_Y$$

$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} D = 0$$

$$\begin{cases} X_2 = -2Y + \epsilon_2 \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} \qquad D = 1$$

$$X_2 = 1$$

$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \\ X_2 = 10Y + \epsilon_Y \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases} D = 2$$

$$\begin{cases} x_{3} = 2Y + 0.1\epsilon_{3} \\ \begin{cases} \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{Y} \sim \mathcal{N}(0, 1) \\ X_{1} = 10 + \epsilon_{1} \\ Y = 3X_{1} + \epsilon_{Y} \end{cases} & D = 1 \end{cases}$$

$$\begin{cases} \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{Y} \sim \mathcal{N}(0, 1) \\ X_{1} = 10 + \epsilon_{1} \\ Y = 3X_{1} + \epsilon_{Y} \end{cases}$$

$$\begin{cases} X_{2} = 1 \\ X_{3} = 2Y + 0.1\epsilon_{3} \end{cases}$$

$$\begin{cases} \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{Y} \sim \mathcal{N}(0, 1) \\ X_{2} = \begin{cases} -2Y + \epsilon_{2} \text{ if } D = 0 \\ 1 & \text{if } D = 1 \\ 10Y + \epsilon_{Y} \text{ if } D = 2 \end{cases}$$

$$\begin{cases} \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{Y} \sim \mathcal{N}(0, 1) \\ X_{3} = 2Y + 0.1\epsilon_{3} \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} \qquad D = 0$$

$$X_2 = -2Y + \epsilon_2$$

$$X_3 = 2Y + 0.1\epsilon_3$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0,1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} D = 1$$

$$\begin{cases} X_2 = 1 \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0,1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_Y \end{cases} \qquad D = 2$$

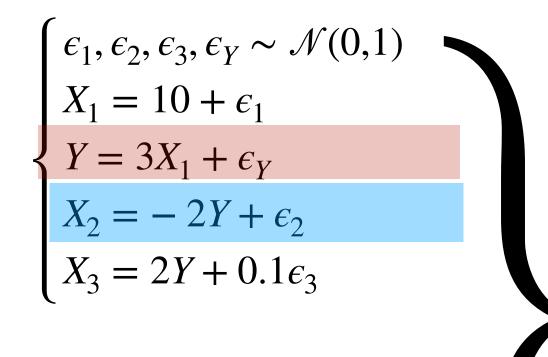
$$\begin{cases} X_2 = 10Y + \epsilon_Y \\ X_3 = 2Y + 0.1\epsilon_3 \end{cases}$$

$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_\gamma \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \\ Y = 3X_1 + \epsilon_\gamma \end{cases}$$

$$\begin{cases} X_2 = \begin{cases} -2Y + \epsilon_2 & \text{if } D = 0 \\ 1 & \text{if } D = 1 \\ 10Y + \epsilon_\gamma & \text{if } D = 2 \end{cases}$$

$$X_3 = 2Y + 0.1\epsilon_3$$

$$X_i = f(\operatorname{Pa}(X_i))$$



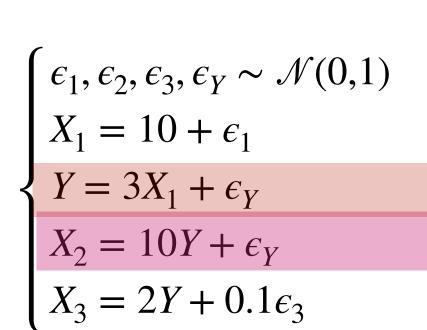
$$\begin{cases} \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_Y \sim \mathcal{N}(0, 1) \\ X_1 = 10 + \epsilon_1 \end{cases}$$

$$Y = 3X_1 + \epsilon_Y$$

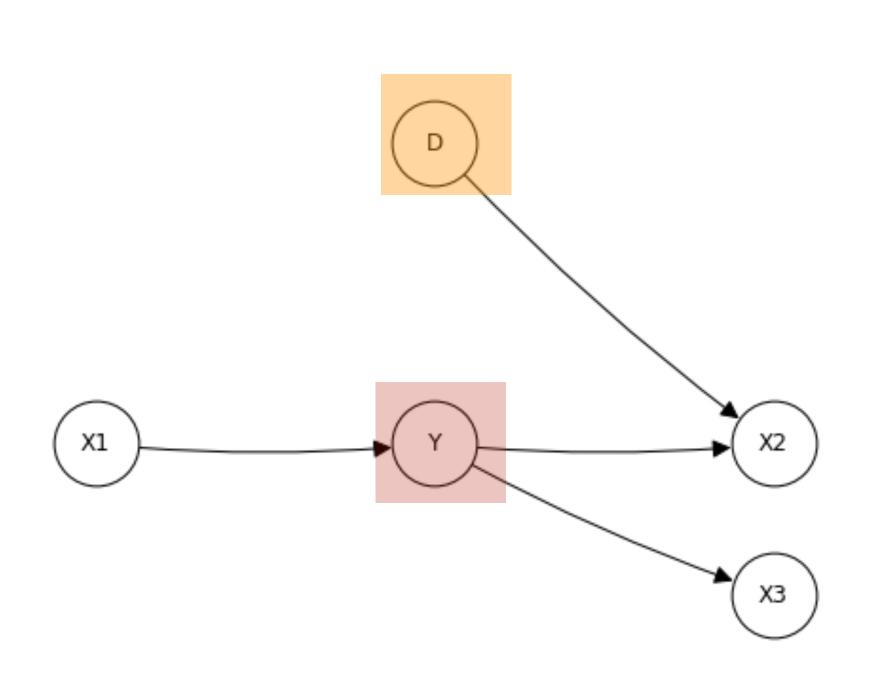
$$X_2 = 1$$

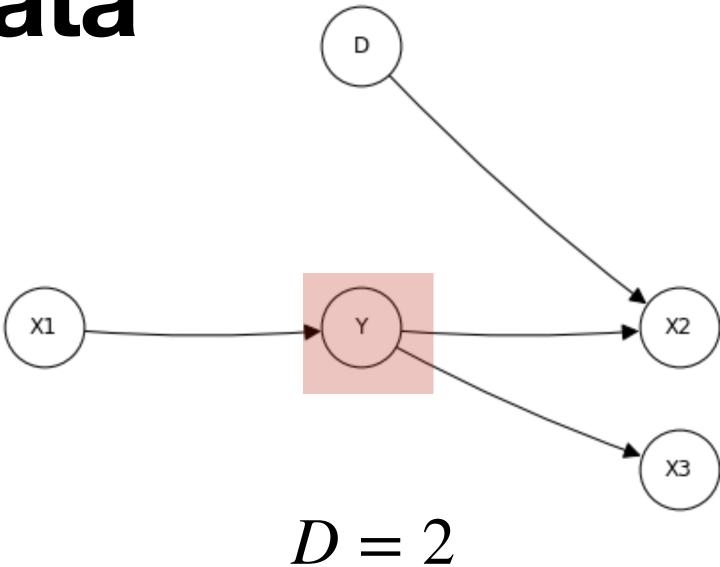
$$X_3 = 2Y + 0.1\epsilon_3$$

Source domains



Target domain





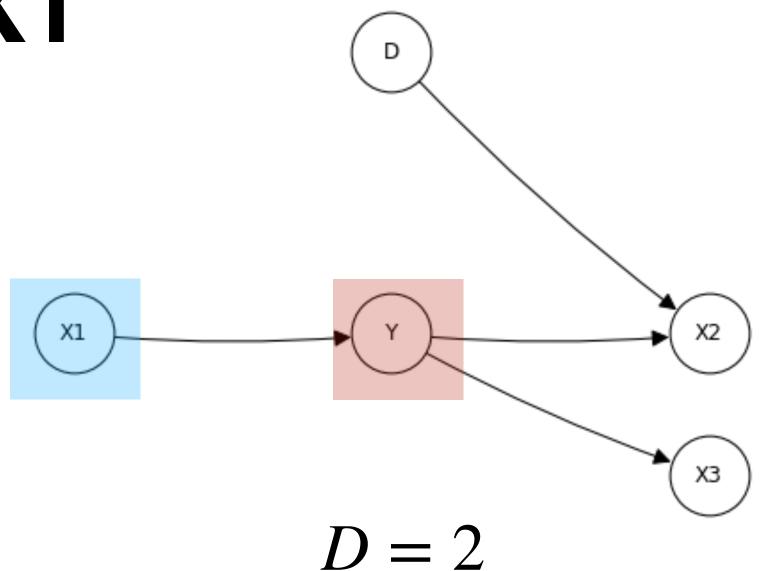
$$D = 0$$

d	x1	у	x2	х3
0	8.973763	26.130494	-51.648475	52.330948
0	10.428340	31.894998	-64.373356	63.802704
0	8.911484	25.166962	-52.313502	50.279162
0	9.841798	29.783299	-60.419296	59.539914
0	8.969118	27.660573	-55.075839	55.327185

$$D=1$$

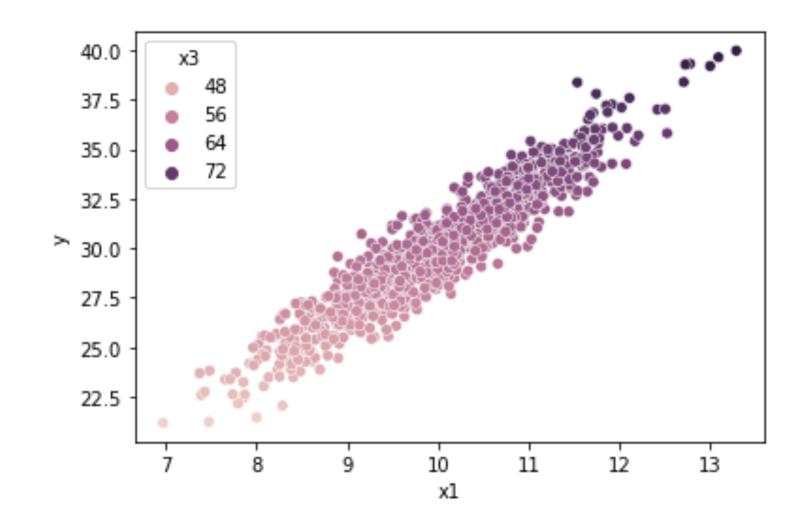
	_		_	_
d	x1	У	х2	х3
1	9.941015	28.696601	1	57.475345
1	8.762380	25.715927	1	51.275390
1	9.636201	28.407387	1	56.884332
1	10.875069	31.370200	1	62.686789
1	10.023968	31.253540	1	62.388444

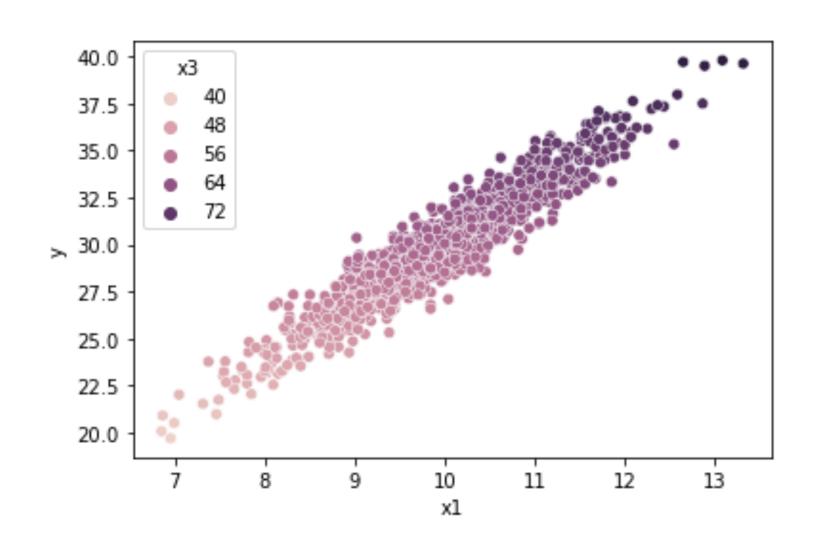
d	x1	у	x2	х3
2	9.671277	26.556214	265.034283	53.338139
2	9.613139	27.120226	270.746784	54.340341
2	10.718335	29.589532	295.318526	59.291053
2	9.002388	26.629254	264.942583	53.340389
2	9.289340	29.030355	289.747562	58.098312

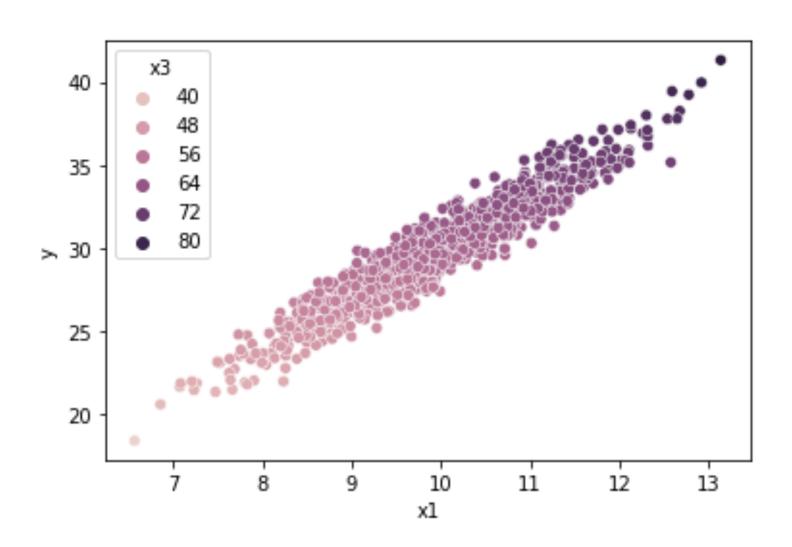


$$D = 0$$

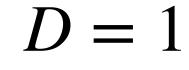
$$D = 1$$

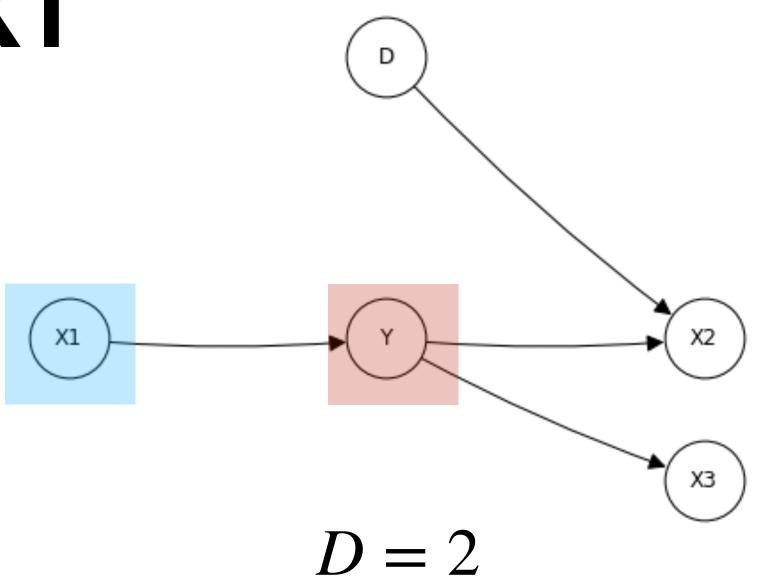


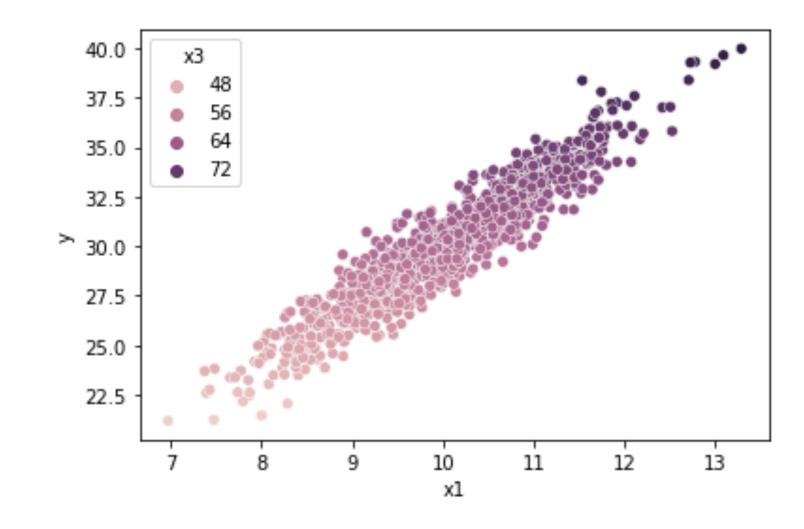


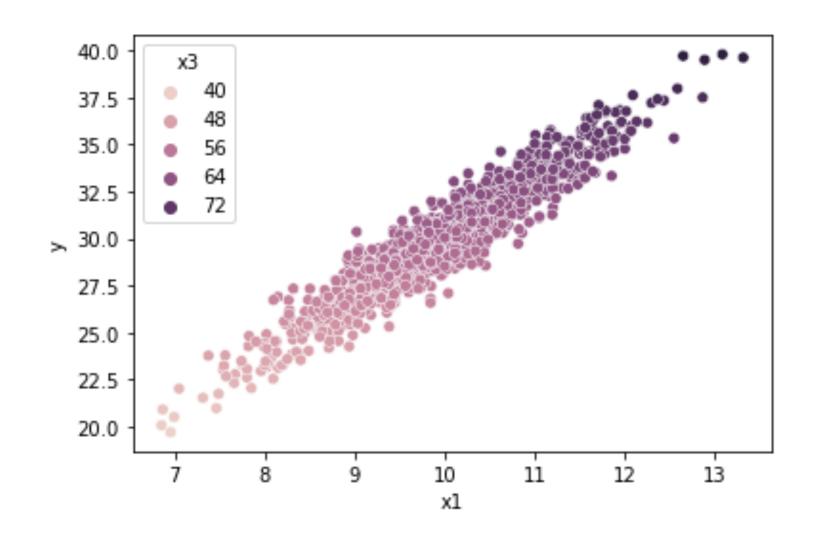


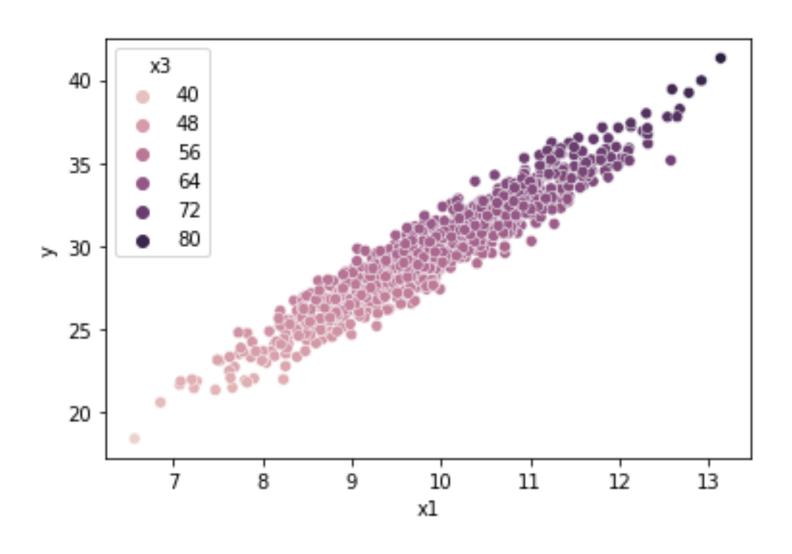
$$D = 0$$

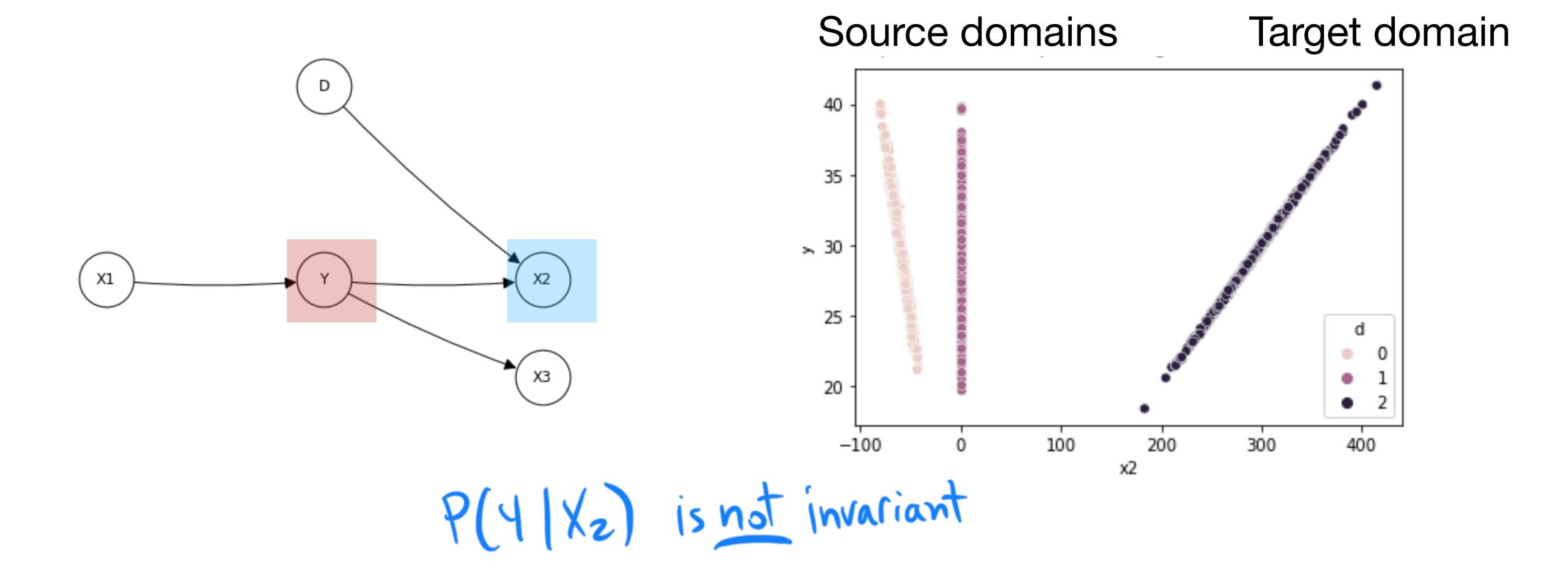


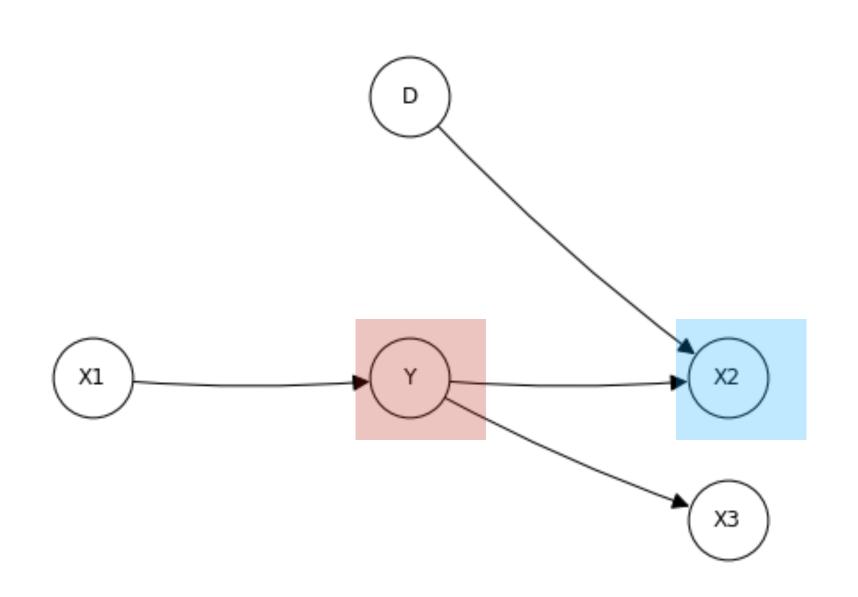


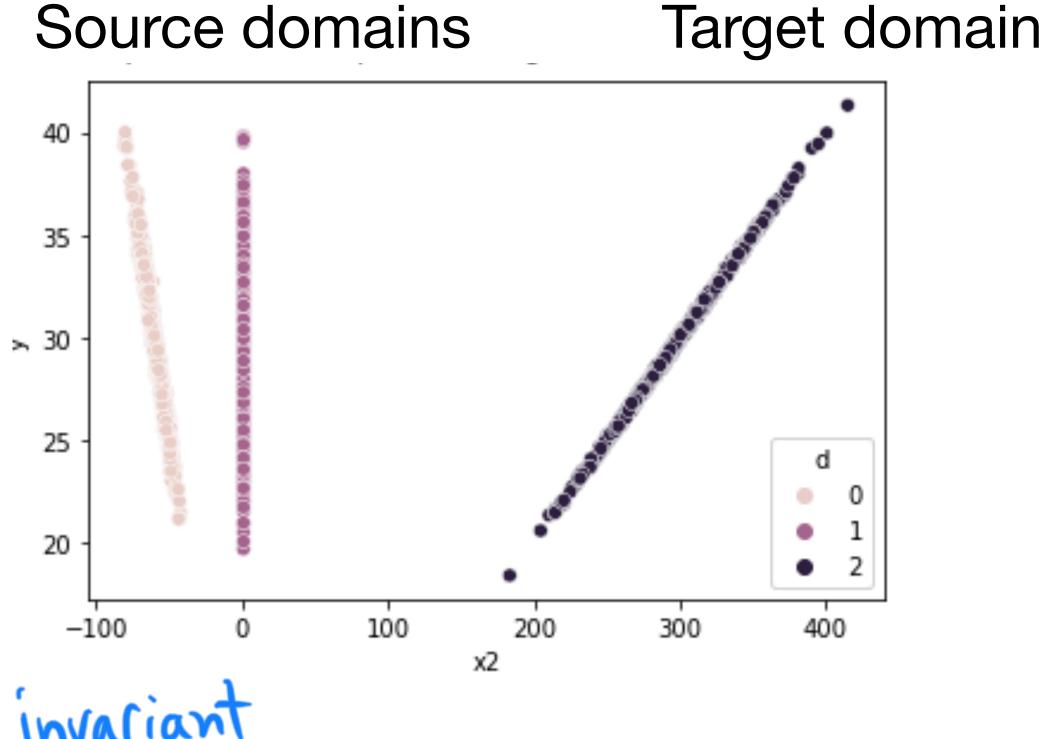










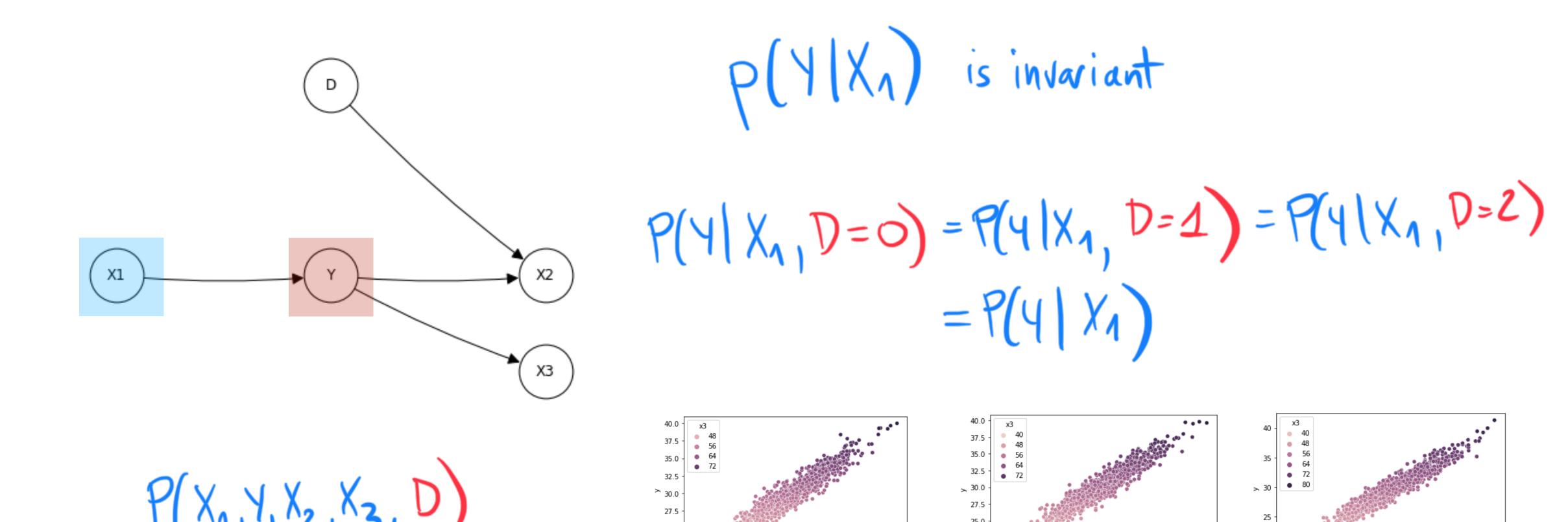


P(4/X2) is not invariant

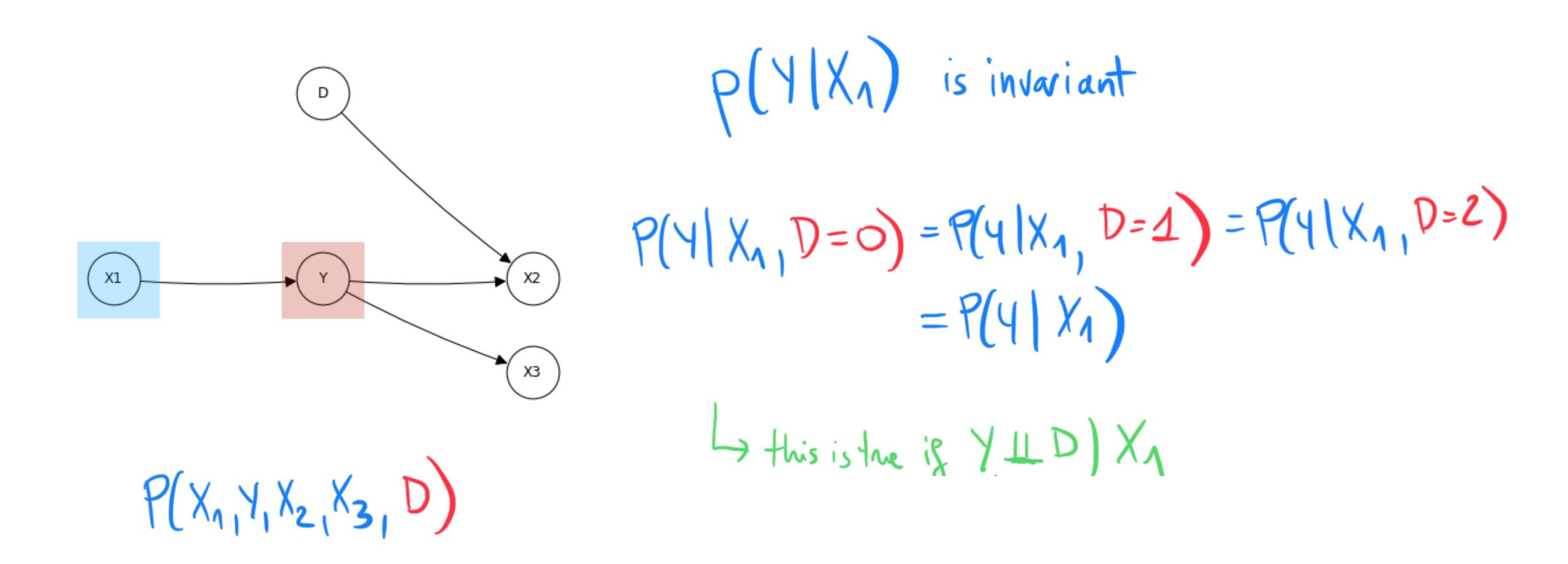
```
sns.scatterplot(data = df, x="x2", y="y", hue="d")
X2_0 = df_0["x2"].values.reshape(-1, 1)
X2_2 = df_2["x2"].values.reshape(-1, 1)
model = LinearRegression().fit(X2_0, Y_0)
est_Y_2 = model.predict(X2_2)
print("Mean squared error predicting Y in environment 2 based on model learnt in environment 0 from X2", mean_squared_error(Y_2,est_Y_2))
```

Mean squared error predicting Y in environment 2 based on model learnt in environment 0 from X2 30518.374428658524

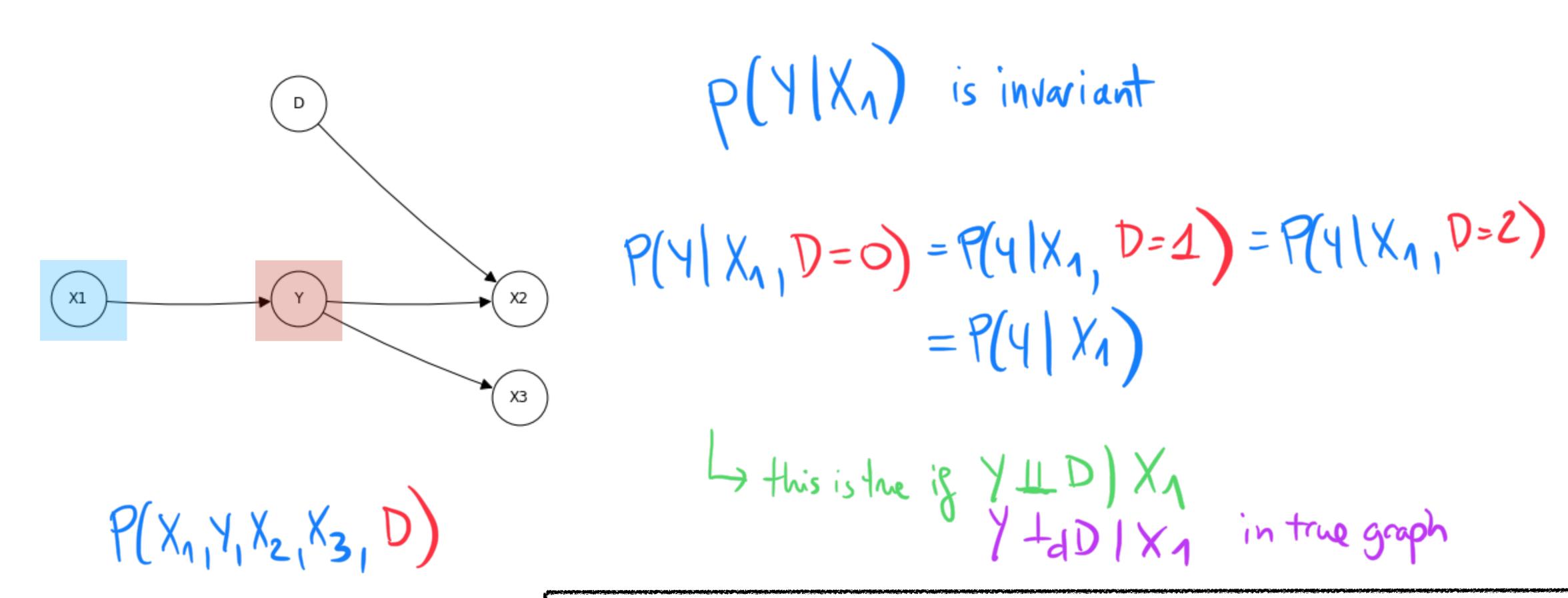
Separating features intuition - X1



Separating features intuition - X1

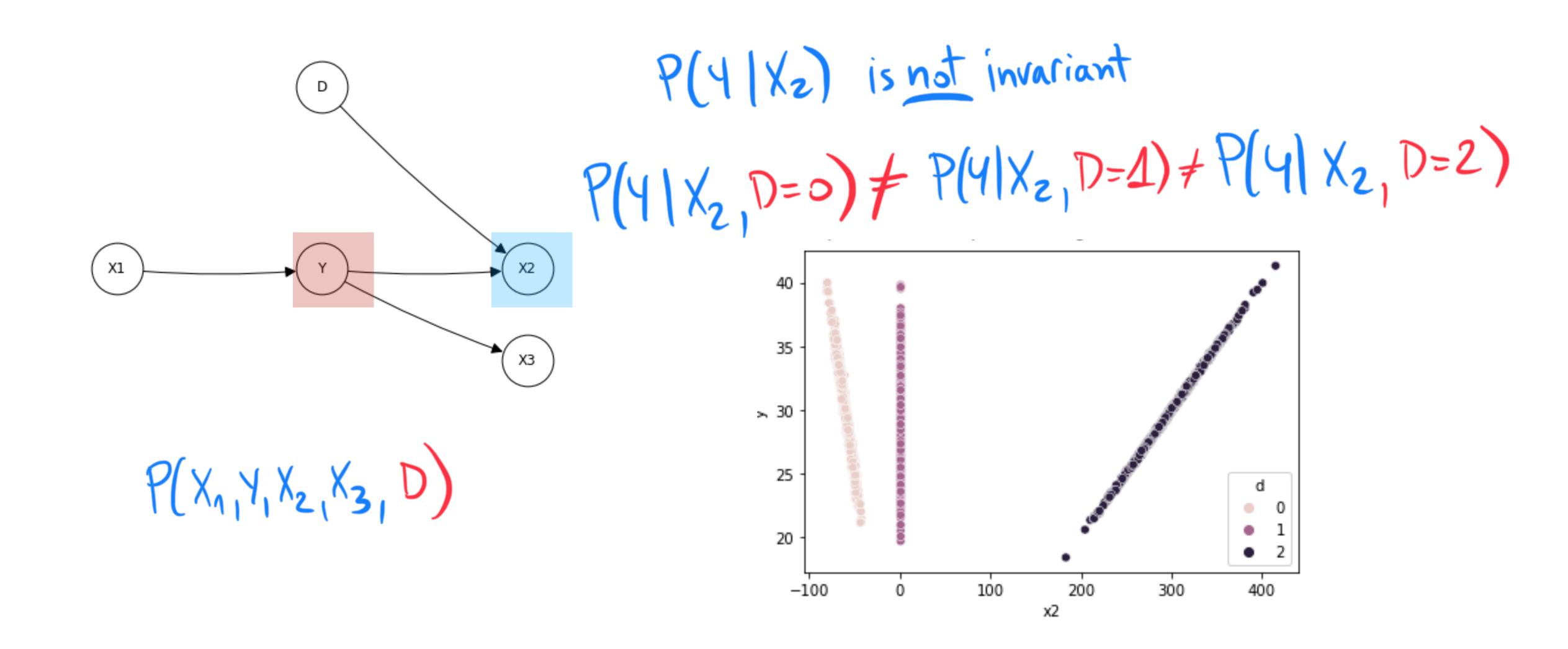


Separating features intuition - X1

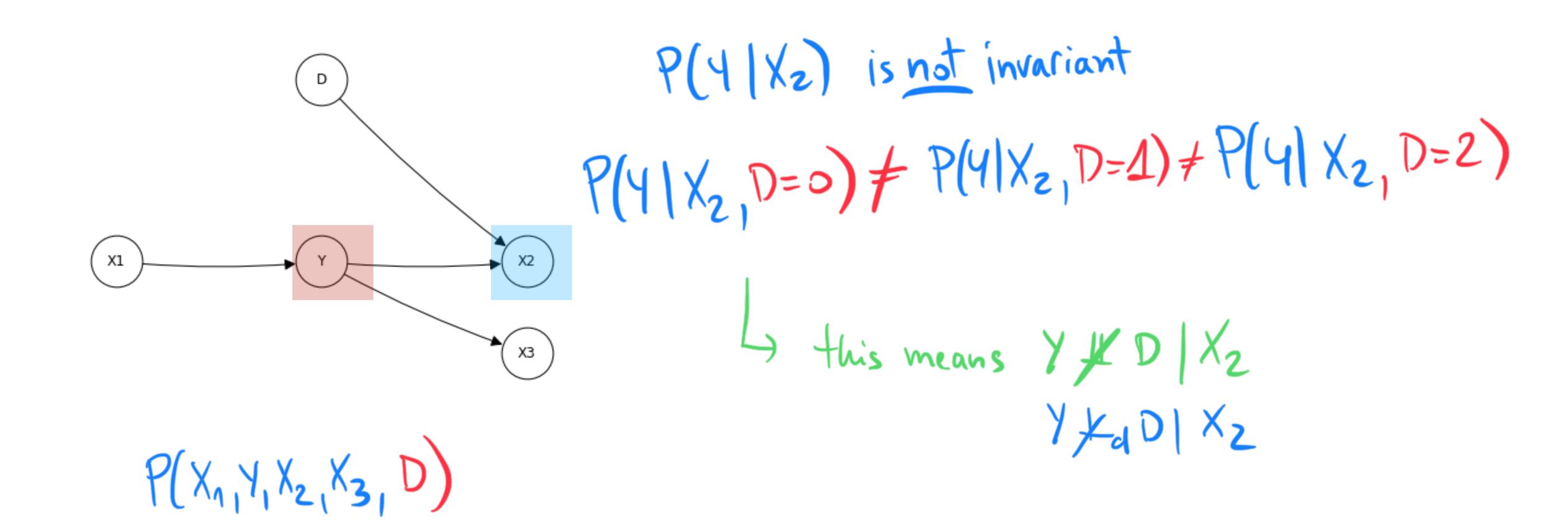


d-separation [Pearl 1988 allows us to read conditional independences from a Bayesian network

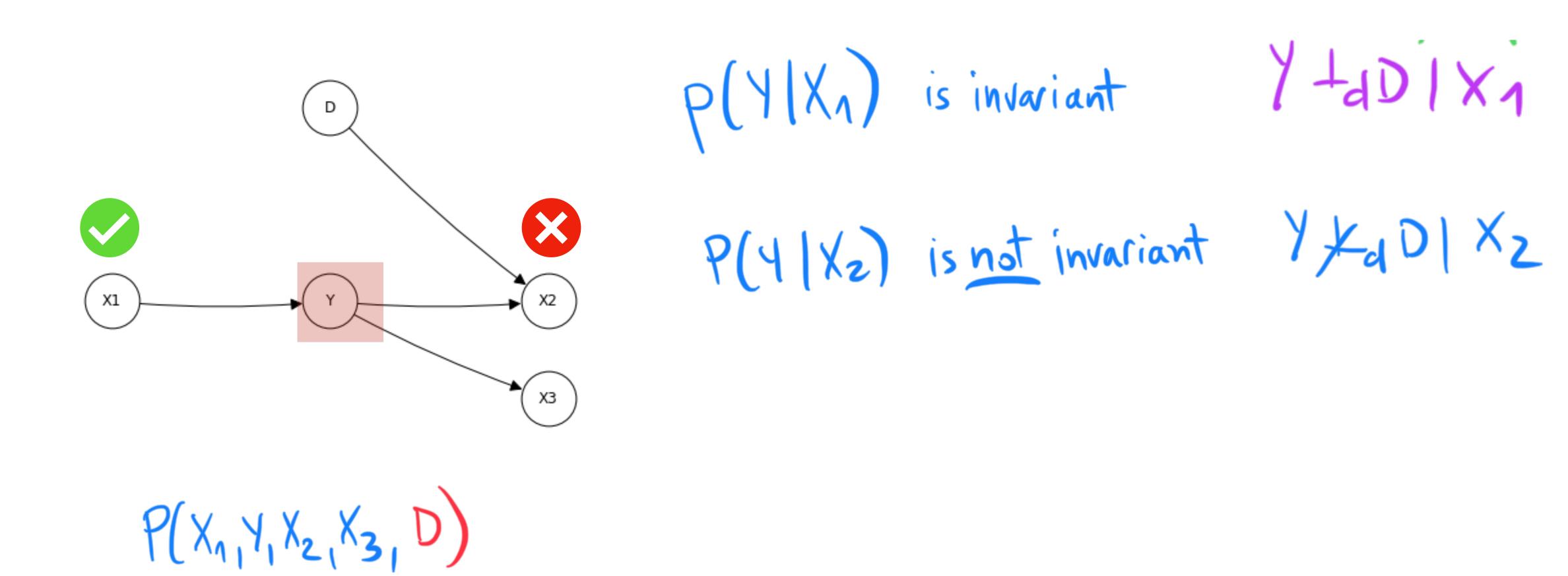
Separating features intuition - X2



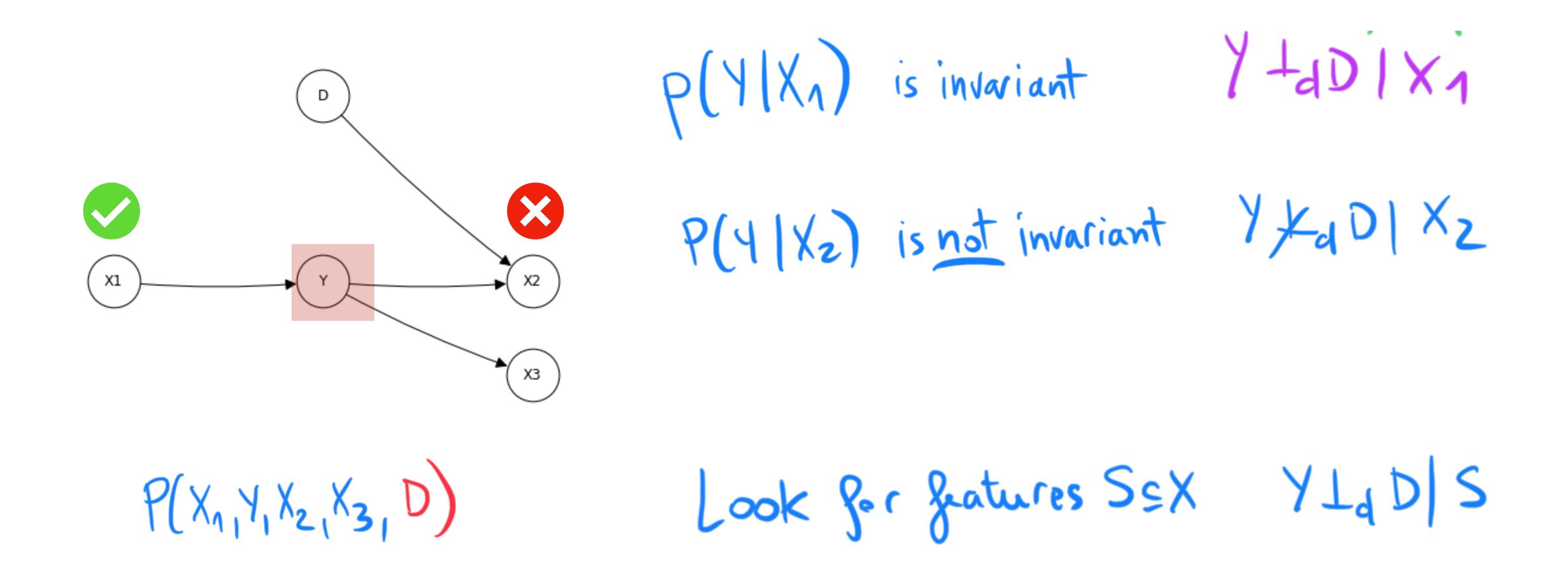
Separating features intuition - X2



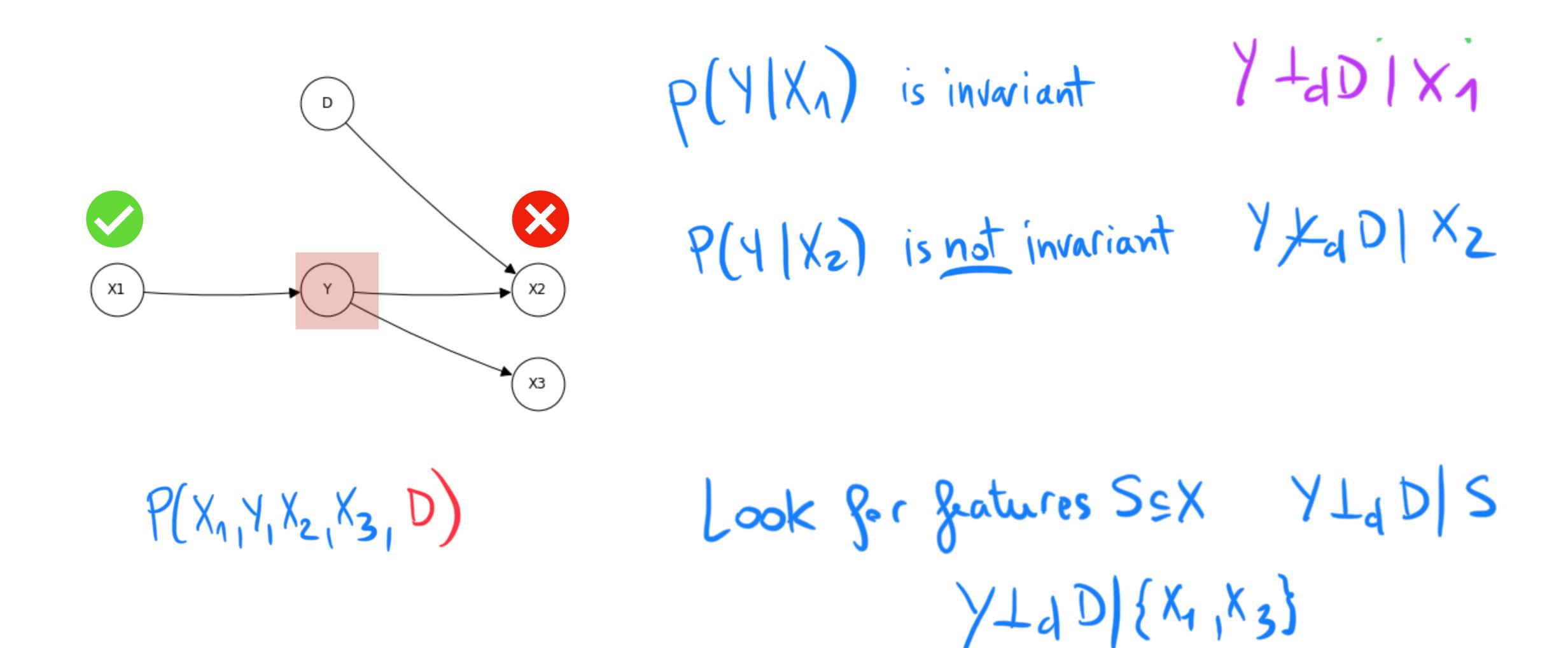
Separating features intuition - summary



Separating features intuition - summary

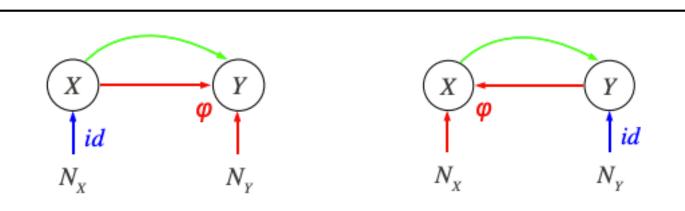


Separating features intuition - summary

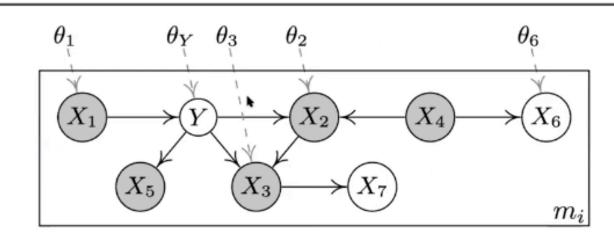


Causality allows us to reason systematically about distribution shifts, e.g. through graphs

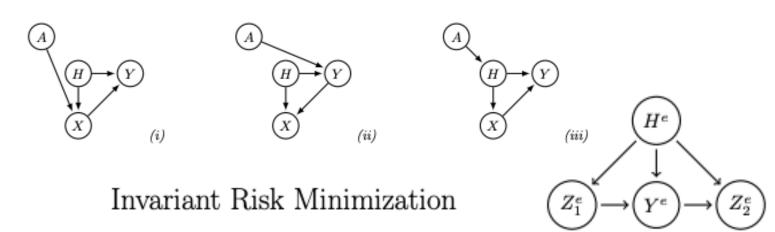
On Causal and Anticausal Learning



Domain Adaptation as a Problem of Inference on Graphical Models

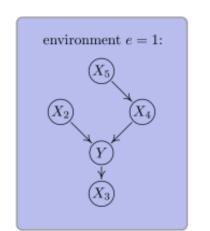


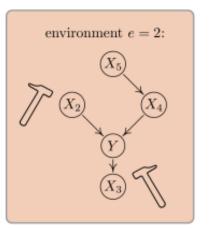
Anchor regression: heterogeneous data meet causality

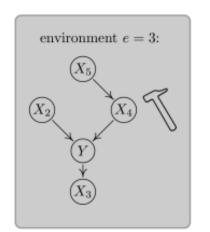


J. R. Statist. Soc. B (2016) 78, Part 5, pp. 947–1012

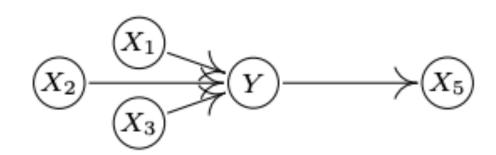
Causal inference by using invariant prediction: identification and confidence intervals



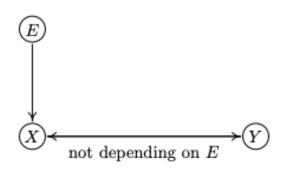




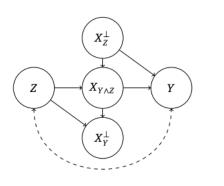
Invariant Models for Causal Transfer Learning

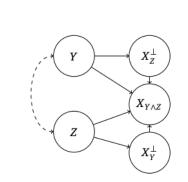


Invariance, Causality and Robustness

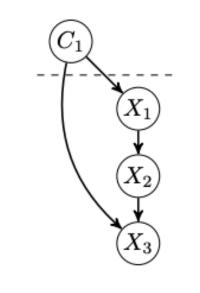


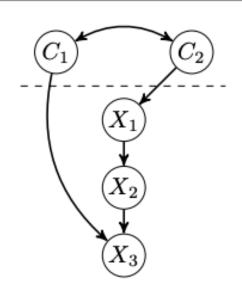
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests



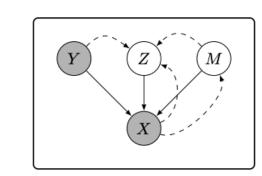


Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions



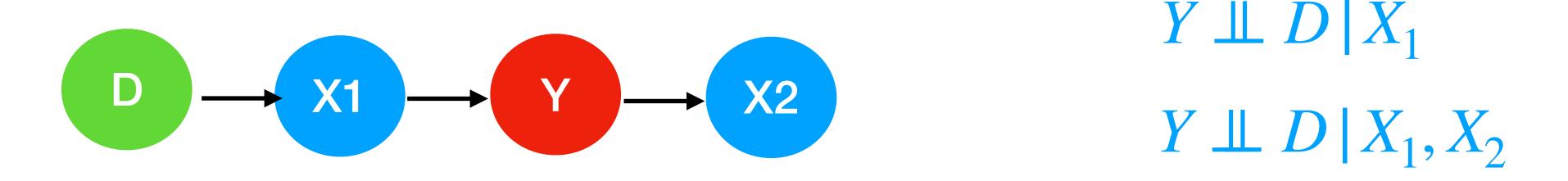


A Causal View on Robustness of Neural Networks



and many more....

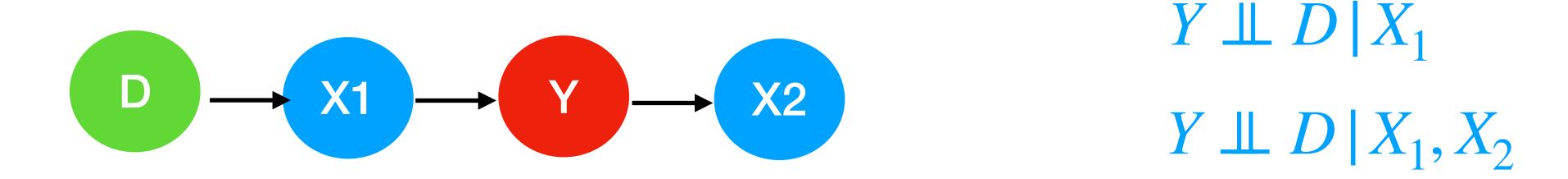
Common misconceptions: 1. An invariant feature need not be causal



Y|X1,X2 is invariant => invariant features are not necessarily parents of Y

Invariant feature across "many different datasets" is not enough in general to find causal parents, need more assumptions

Common misconceptions: 1. An invariant feature need not be causal



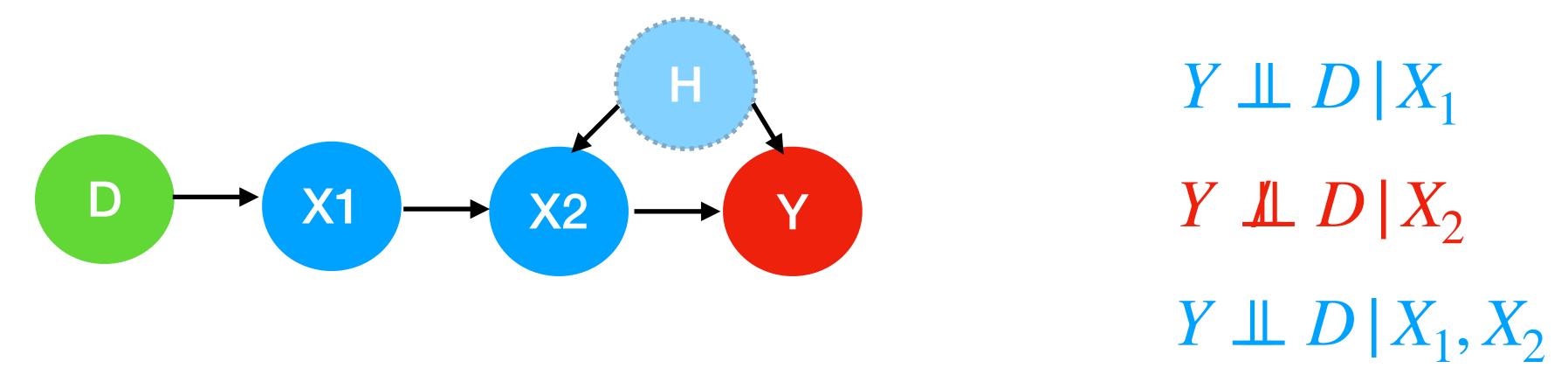
Y|X1,X2 is invariant => invariant features are not necessarily parents of Y

Invariant feature across "many different datasets" is not enough in general to find causal parents, need more assumptions

• Invariant Causal Prediction [Peters et al. 2016] under causal sufficiency:

$$\mathbf{S}^* = \bigcap_{Y \sqcup D \mid \mathbf{S}} \mathbf{S} \subseteq Pa(Y) \qquad \{X_1, X_2\} \cap \{X_1\} = \{X_1\}$$

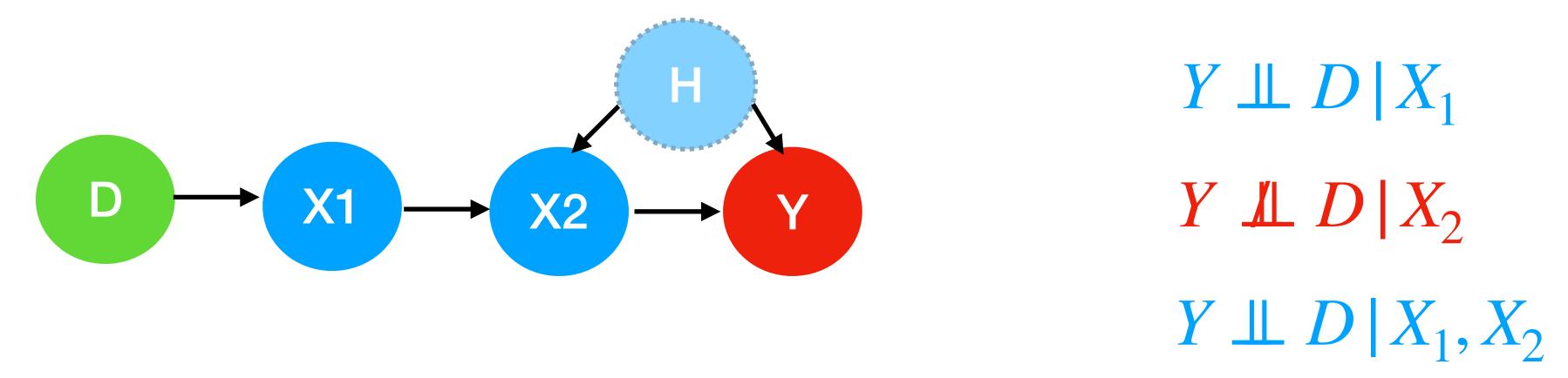
Common misconception 2: Parents are not enough under latent confounding



Y|X1 is invariant, Y|X2 is not

Even if we knew all the parents, under latent confounding this wouldn't necessarily help transfer

Common misconception 2: Parents are not enough under latent confounding



Y|X1 is invariant, Y|X2 is not

Even if we knew all the parents, under latent confounding this wouldn't necessarily help transfer

 Conclusion: causality (e.g. using the causal parents, learning the complete causal graph) is neither necessary or sufficient* for transfer, what we care about are conditional independences/d-separations

Desiderata for a causality inspired domain adaptation method

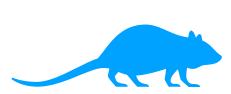
• X, Y and changes can be represented by an unknown causal graph

Desiderata for a causality inspired domain adaptation method

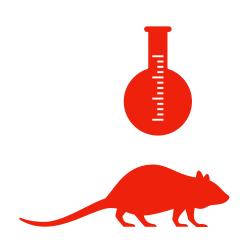
- X, Y and changes can be represented by an unknown causal graph
- Allow for latent confounders
- Avoid parametric assumptions, allow for heterogeneous effects across domains
- Instead of modeling changes between each domain, distinguish the change between the mixture of sources and the target

Causal domain adaptation problem [Magliacane et al. 2018]

- Unsupervised multi-source domain adaptation
- We interpret the change in the target domain as a soft intervention
- We assume Y cannot be intervened upon directly P(Y) can still change



	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0



	X1	X2	Y
Gene B	0,2	1	?
Gene B	0,3	1	?
Gene B	0,3	2	?
Gene B	0,4	1	?

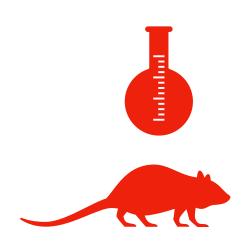
	X1	X2	Y
Gene A	3,1	2	1
Gene A	3,2	3	1
Gene A	4	1	1
Gene A	3,2	3	0

Causal domain adaptation [Magliacane et al. 2018]

Multiple context variable C1, C2 ...

- Unsupervised multi-source domain adaptation
- We interpret the change in the target domain as a soft intervention
- We assume Y cannot be intervened upon directly P(Y) can still change

	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0



	X1	X2	Y
Gene B	0,2	1	?
Gene B	0,3	1	?
Gene B	0,3	2	?
Gene B	0,4	1	?



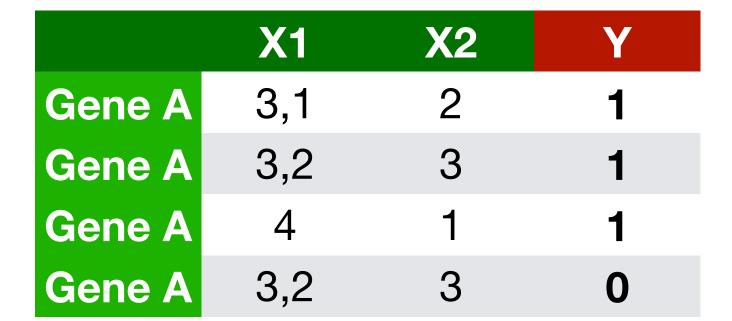
Causal domain adaptation problem [Magliacane et al. 2018]

- Unsupervised multi-source domain adap
 C1 = 1
- We interpret the change in the target domain as a soft intervention
- We assume Y cannot be intervened upon directly P(Y) can still change

	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0



	X1	X2	Y
Gene B	0,2	1	?
Gene B	0,3	1	?
Gene B	0,3	2	?
Gene B	0,4	1	?

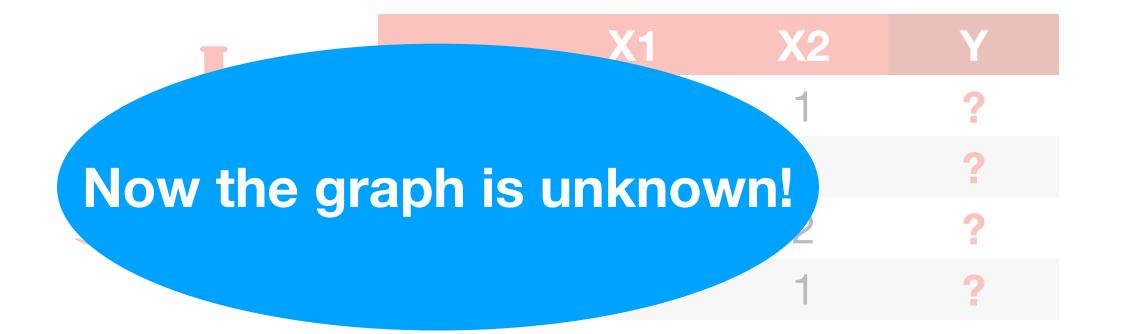


Causal domain adaptation problem [Magliacane et al. 2018]

- Unsupervised multi-source domain adaptation
- We interpret the change in the target domain as a soft intervention
- We assume Y cannot be intervened upon directly P(Y) can still change

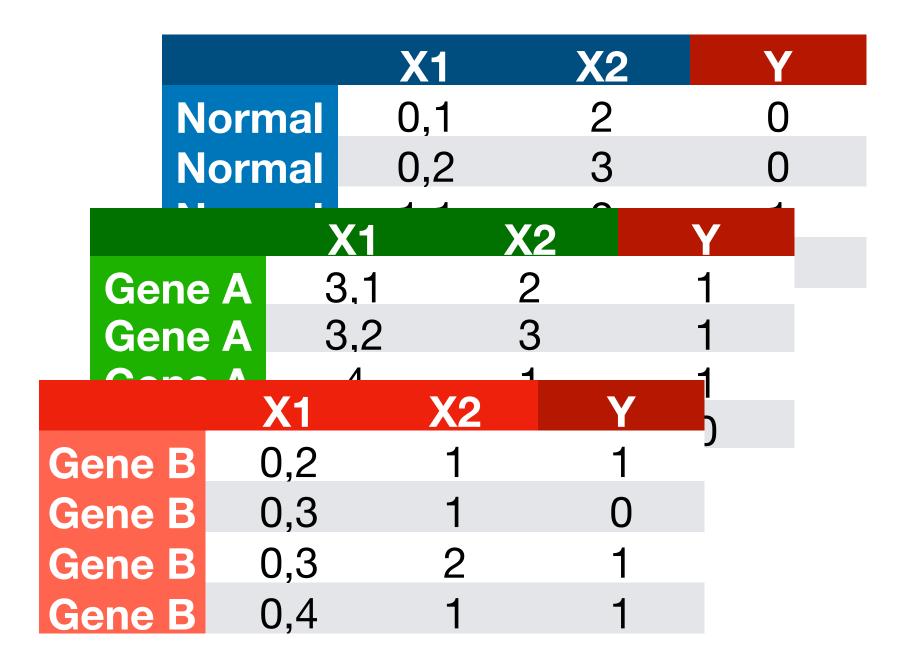
	X1	X2	Y
Normal	0,1	2	0
Normal	0,2	3	0
Normal	1,1	2	1
Normal	0,1	3	0

	X1	X2	Y
Gene A	3,1	2	1
Gene A	3,2	3	1
Gene A	4	1	1
Gene A	3,2	3	0



Joint Causal Inference [Mooij et al. 2020]

We represent jointly different distributions as an unknown single causal graph



Joint Causal Inference [Mooij et al. 2020]

- We represent jointly different distributions as an unknown single causal graph
- Instead of a single domain variable, we add several context variables so we can disentangle changes in distribution across the datasets

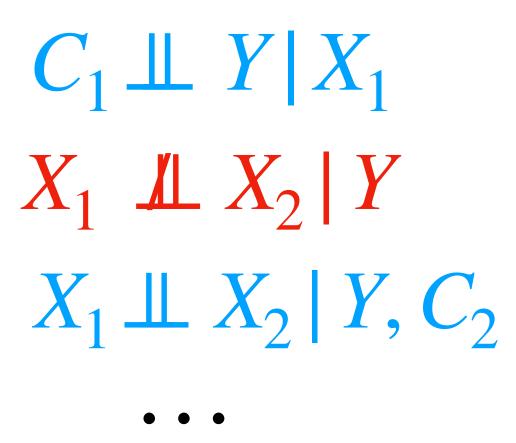
			X 1		X2		Υ
	Norr	nal	0,1		2		0
	Norr	nal	0,2		3		0
		Х		X2		Υ	
Ger	ne A	3	,1	2		1	
	ne A		,2	3		1	
<u> </u>	_ A	X1	X2	4	V	1	
Gene I		0,2	1		1)	
Gene I		0,3	1		0		
Gene I	В	0,3	2		1		
Gene I	B	0,4	1		1		

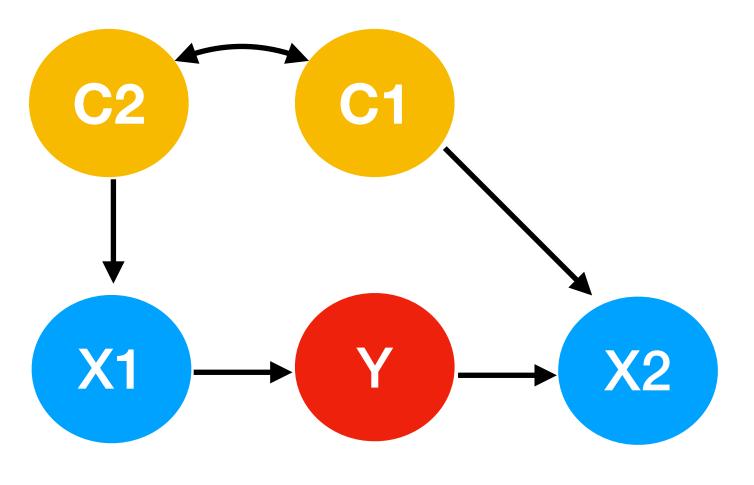
C1	C2	X1	X2	Y
0	0	0,1	2	0
0	0	0,2	3	0
0	0	1,1	2	1
0	0	0,1	3	0
1	0	3,1	2	1
1	0	3,2	3	1
1	0	4	1	1
1	0	3,2	3	0
0	1	0.2	1	1
0	1	0.3	1	0
0	1	0.3	2	1
0	1	0.4	1	1

Joint Causal Inference [Mooij et al. 2020]

- We can learn an equivalence class of the unknown single causal graph using conditional independence tests on systematically pooled data
- We treat context variables as normal variables that we know are uncaused

C1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	1
1	0	3,2	3	1
1	0	4	3	1
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

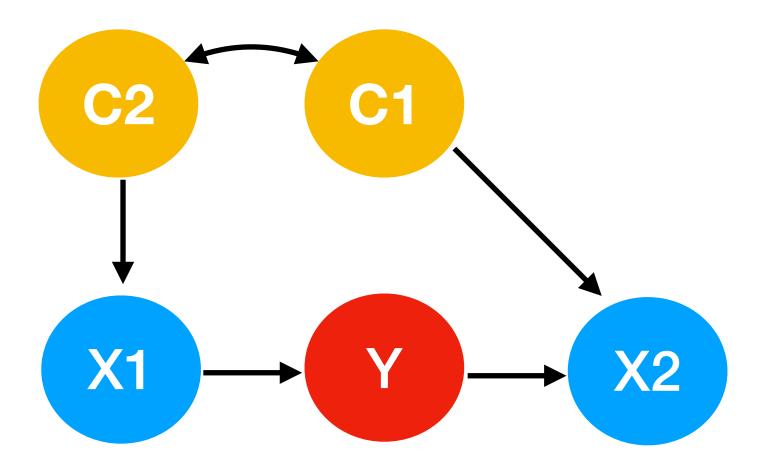




Causal domain adaptation: separating features

Aka stable features, invariant features etc.

 Separating features: sets of features that d-separate Y from the context variable C1 representing the target domain



• {X1} is a separating feature set, {X1, X2} could lead to arbitrary large error

Idea: we could test the conditional independence in the data

$$Y \perp \!\!\! \perp C_1 \mid X_1? \qquad Y \perp \!\!\! \perp C_1 \mid X_2?$$

Idea: we could test the conditional independence in the data

• Problem: Y is always missing when C1=1, so we cannot test these

C1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	?
1	0	3,2	3	?
1	0	4	3	?
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

Idea: we could test the conditional independence in the data

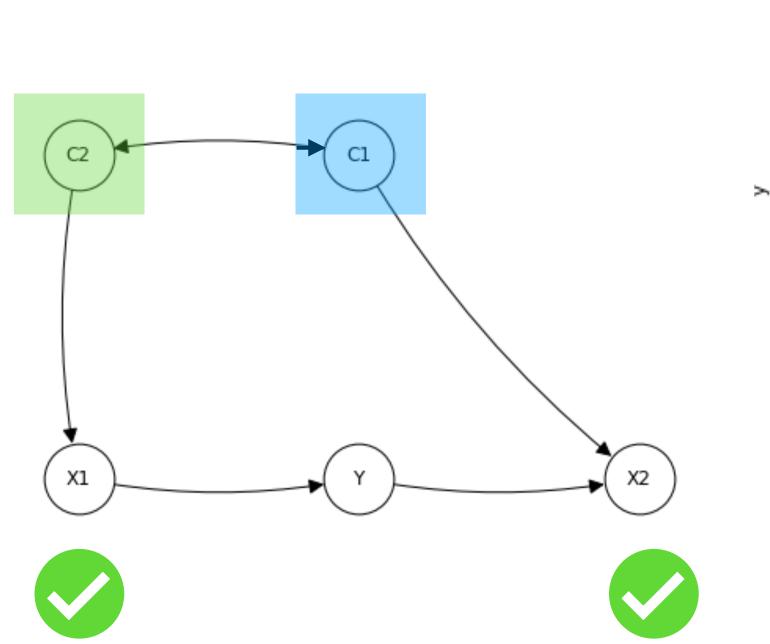
• Problem: Y is always missing when C1=1, so we cannot test these

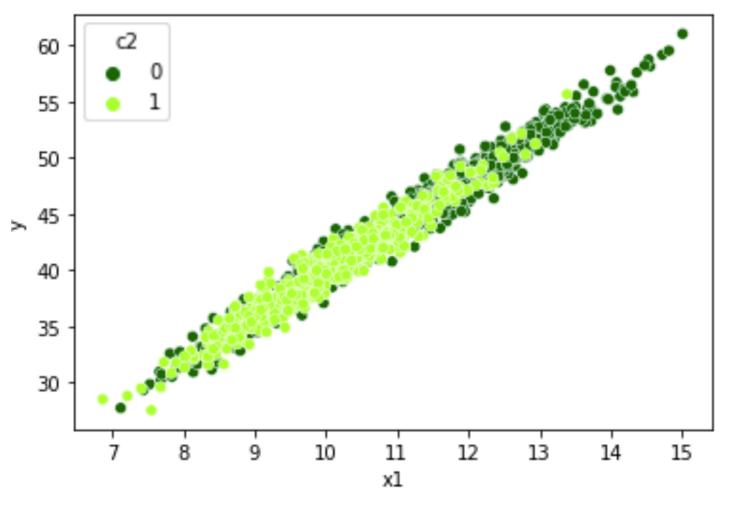
C1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	?
1	0	3,2	3	?
1	0	4	3	?
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

Idea: Invariant features in source domains are also separating in the target domain

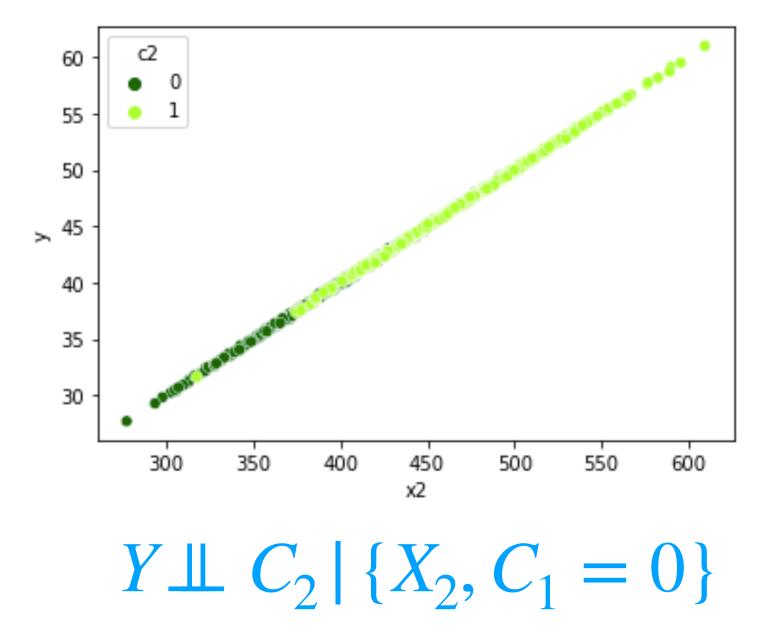
$$Y \perp \!\!\! \perp C_2 \mid \{X_1, C_1 = 0\} \implies Y \perp \!\!\! \perp C_1 \mid X_1$$

Separating features in sources are also separating in target - counterexample

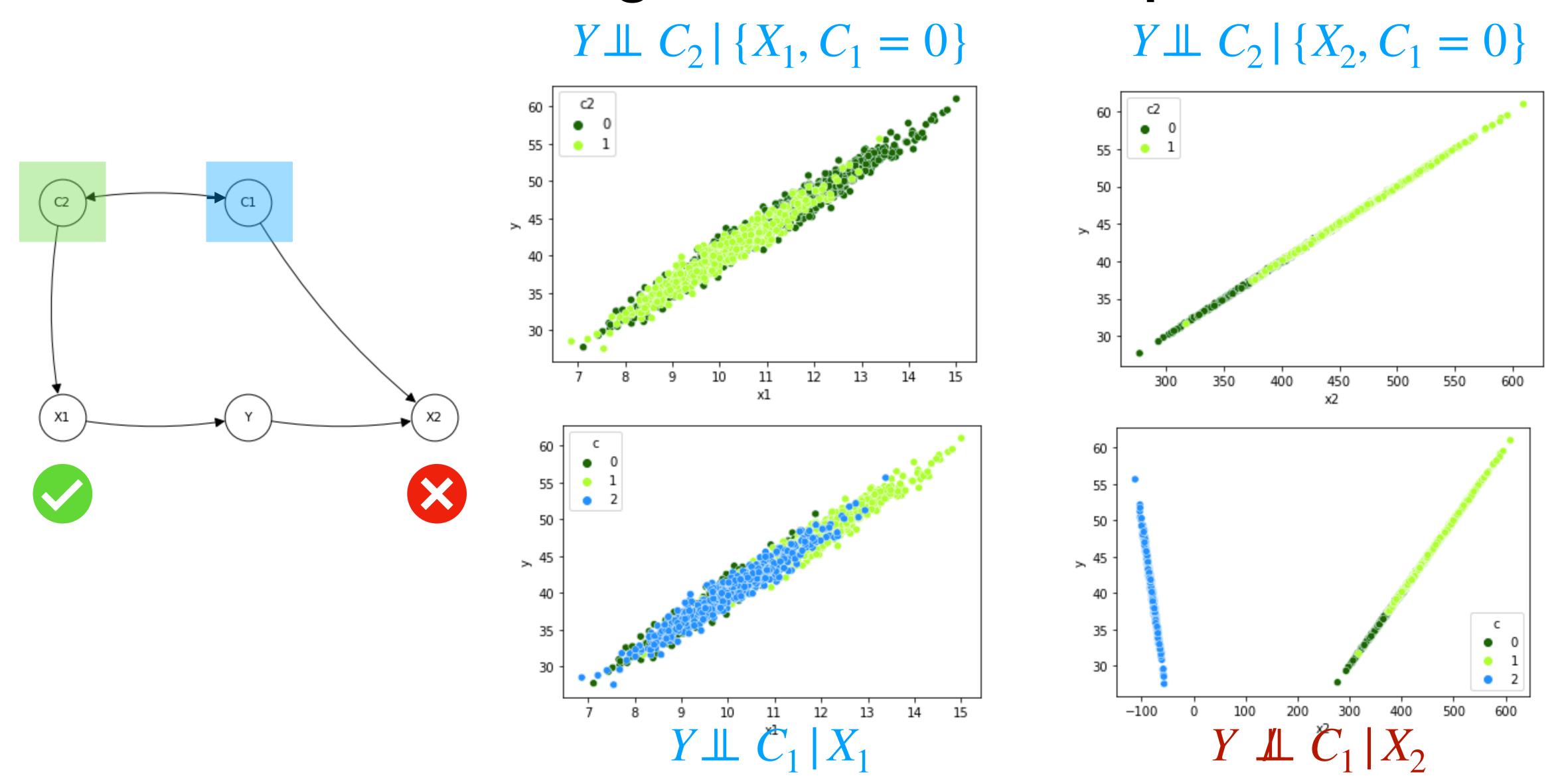




 $Y \perp \!\!\! \perp C_2 \mid \{X_1, C_1 = 0\}$



Separating features in sources are also separating in target - counterexample



• Idea: we could test the conditional independence in the data

• Problem: Y is always missing when C1=1, so we cannot test these

C1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	?
1	0	3,2	3	?
1	0	4	3	?
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

Idea: Invariant features in source domains are also separating in the target domain

$$Y \perp \!\!\! \perp C_2 \mid \{X_1, C_1 = 0\} \implies Y \perp \!\!\! \perp C_1 \mid X_1$$

This is a strong assumption

Idea: we could test the conditional independence in the data

• **Problem:** Y is always missing when C1=1, so we cannot test these

C1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	?
1	0	3,2	3	?
1	0	4	3	?
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

$$X_{1} \perp L X_{2}$$
 $X_{1} \perp L C_{1}$
 $X_{1} \perp L X_{2} \mid C_{1}$
 $X_{1} \perp L X_{2} \mid Y, C_{1} = 0$

• Idea: Can we use all other in/dependences?

Assumptions [Magliacane et al. 2018]

- We assume that there exists an acyclic causal graph that fits all the data (Joint Causal Inference)
- We assume Y cannot be intervened upon directly

Assumptions [Magliacane et al. 2018]

- We assume that there exists an acyclic causal graph that fits all the data (Joint Causal Inference)
- We assume Y cannot be intervened upon directly
- We assume no extra dependences involving Y in target domain C1=1

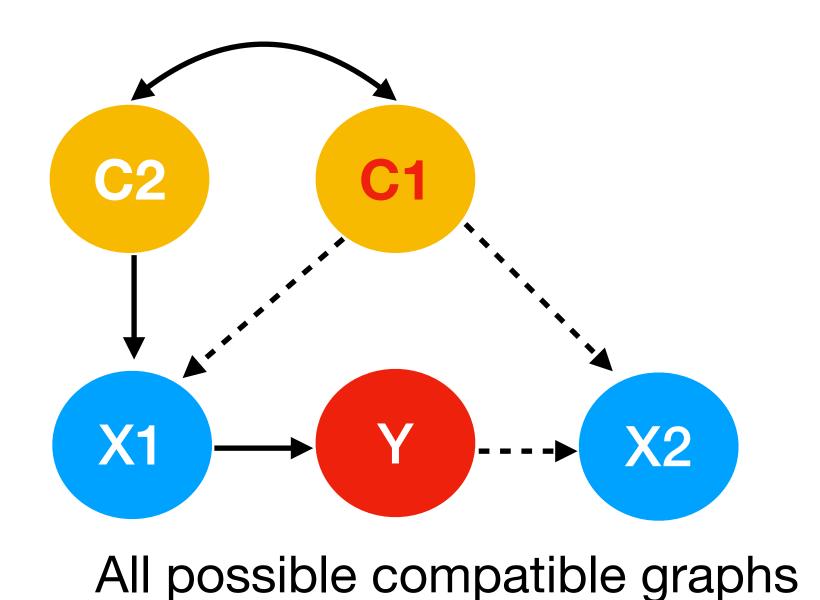
$$A, D, \mathbf{B} \subset \mathbf{V} \setminus \{Y, C_1\}$$
 $Y \perp \!\!\!\perp A \mid \mathbf{B}, C_1 = 0 \implies Y \perp \!\!\!\perp A \mid \mathbf{B}, C_1 = 1$
 $A \perp \!\!\!\perp D \mid \mathbf{B}, Y, C_1 = 0 \implies A \perp \!\!\!\perp D \mid \mathbf{B}, Y, C_1 = 1$

There can be extra independences in the target

A small example that we proved by hand

C 1	C2	X1	X2	Y
0	0	0,1	1	0
0	0	0,2	1	0
0	0	1,1	2	1
1	0	3,1	2	?
1	0	3,2	3	?
1	0	4	3	?
0	1	0,2	0	0
0	1	0,3	0	1
0	1	0,3	1	0

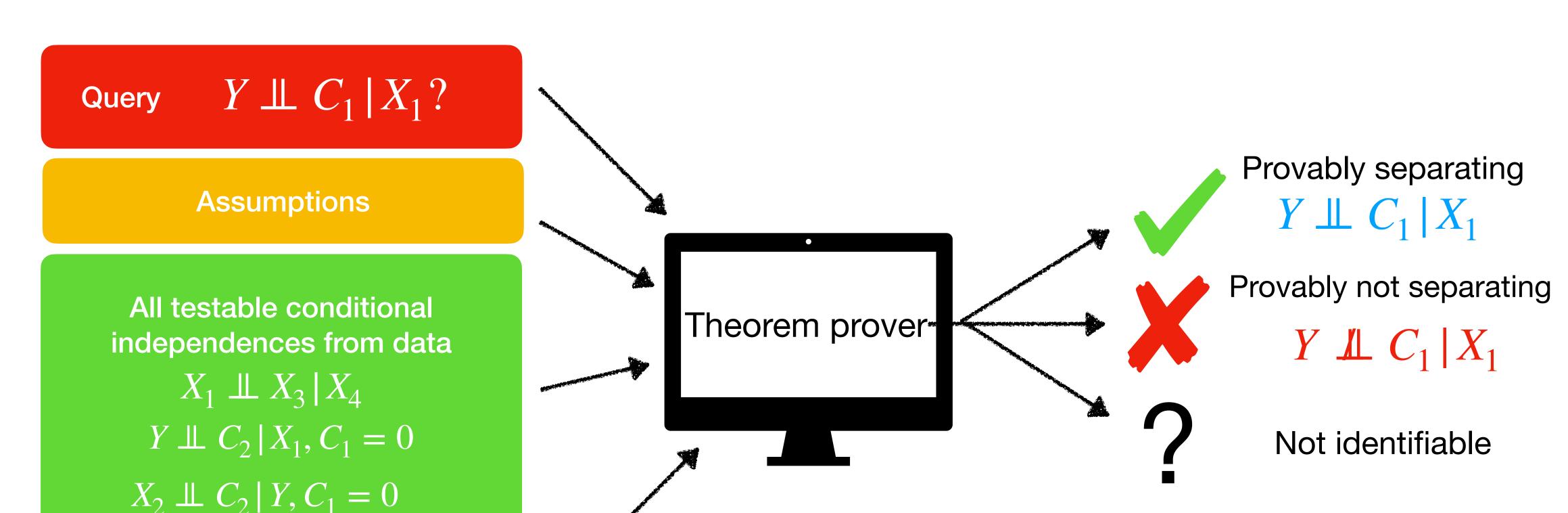
$$Y \perp \!\!\! \perp C_2 \mid C_1 = 0$$
 $Y \perp \!\!\! \perp C_2 \mid X_1, C_1 = 0$
 $X_2 \perp \!\!\! \perp C_2 \mid Y, C_1 = 0$



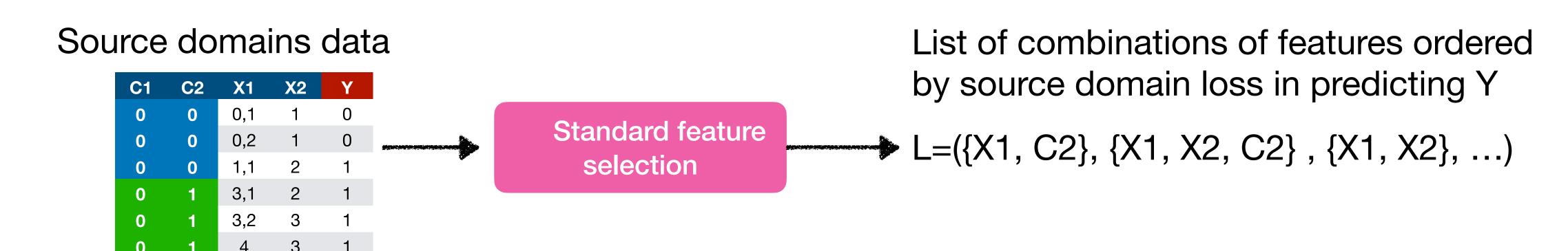
• We can prove untestable separating test without reconstructing the graph:

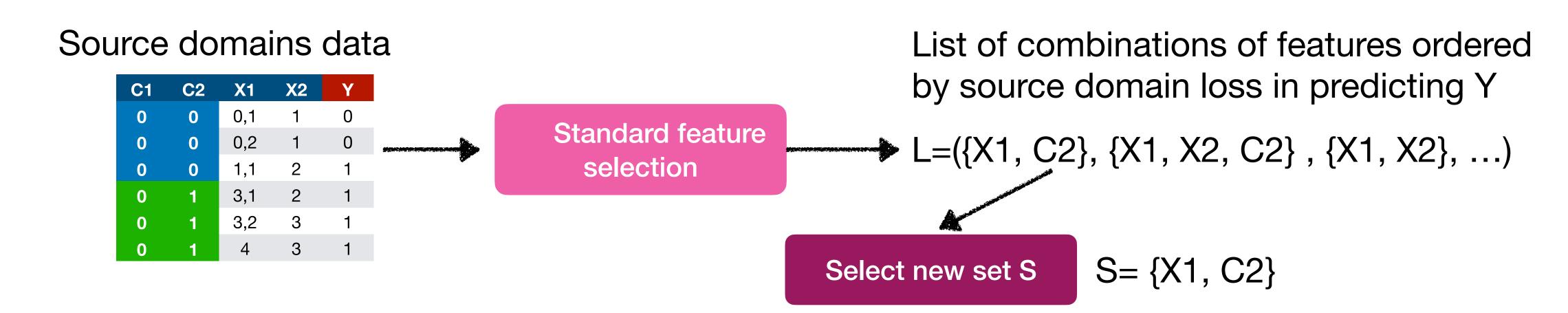
$$Y \perp \!\!\! \perp C_1 \mid X_1$$

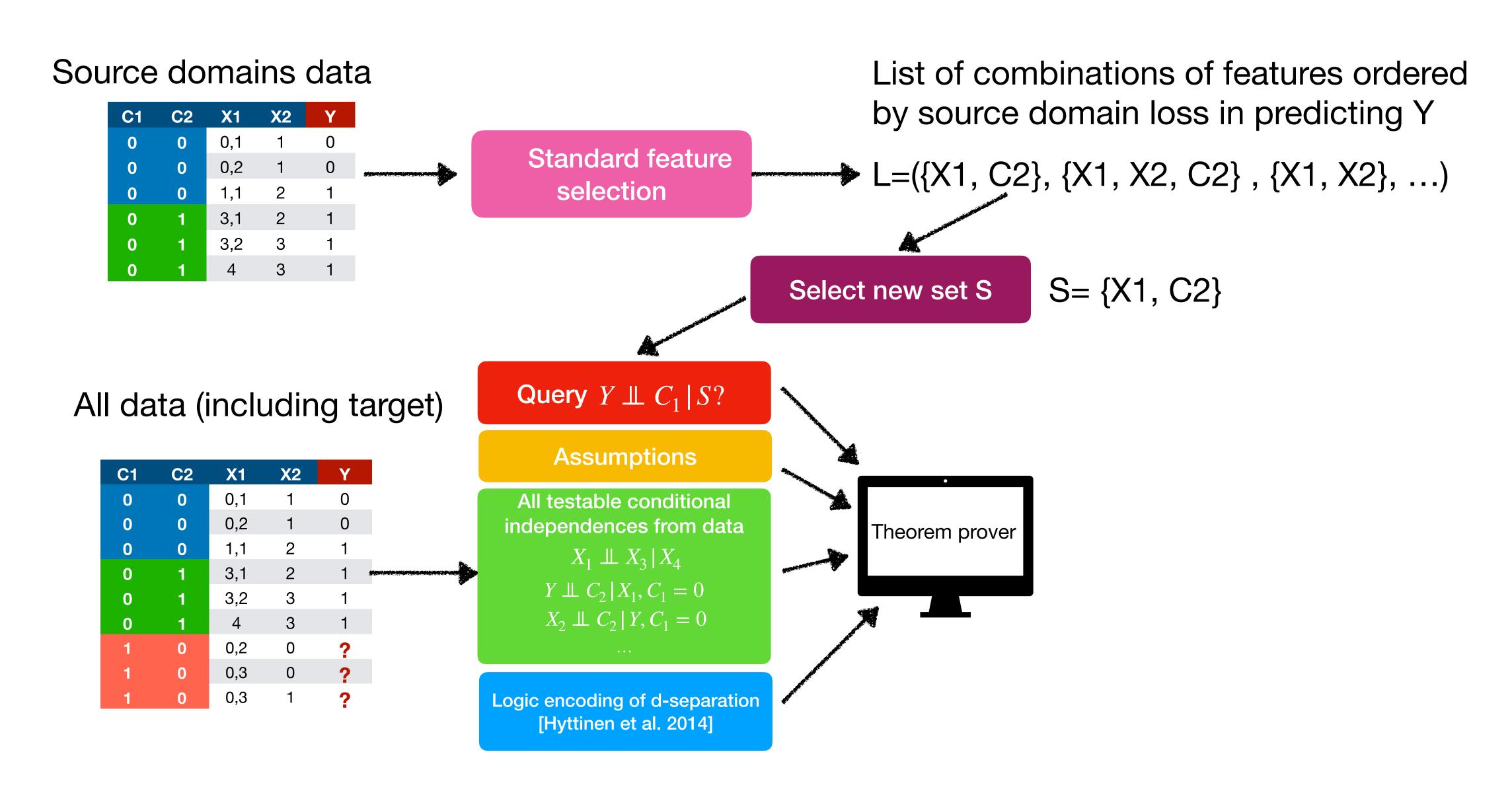
Inferring separating sets without enumerating all possible causal graphs

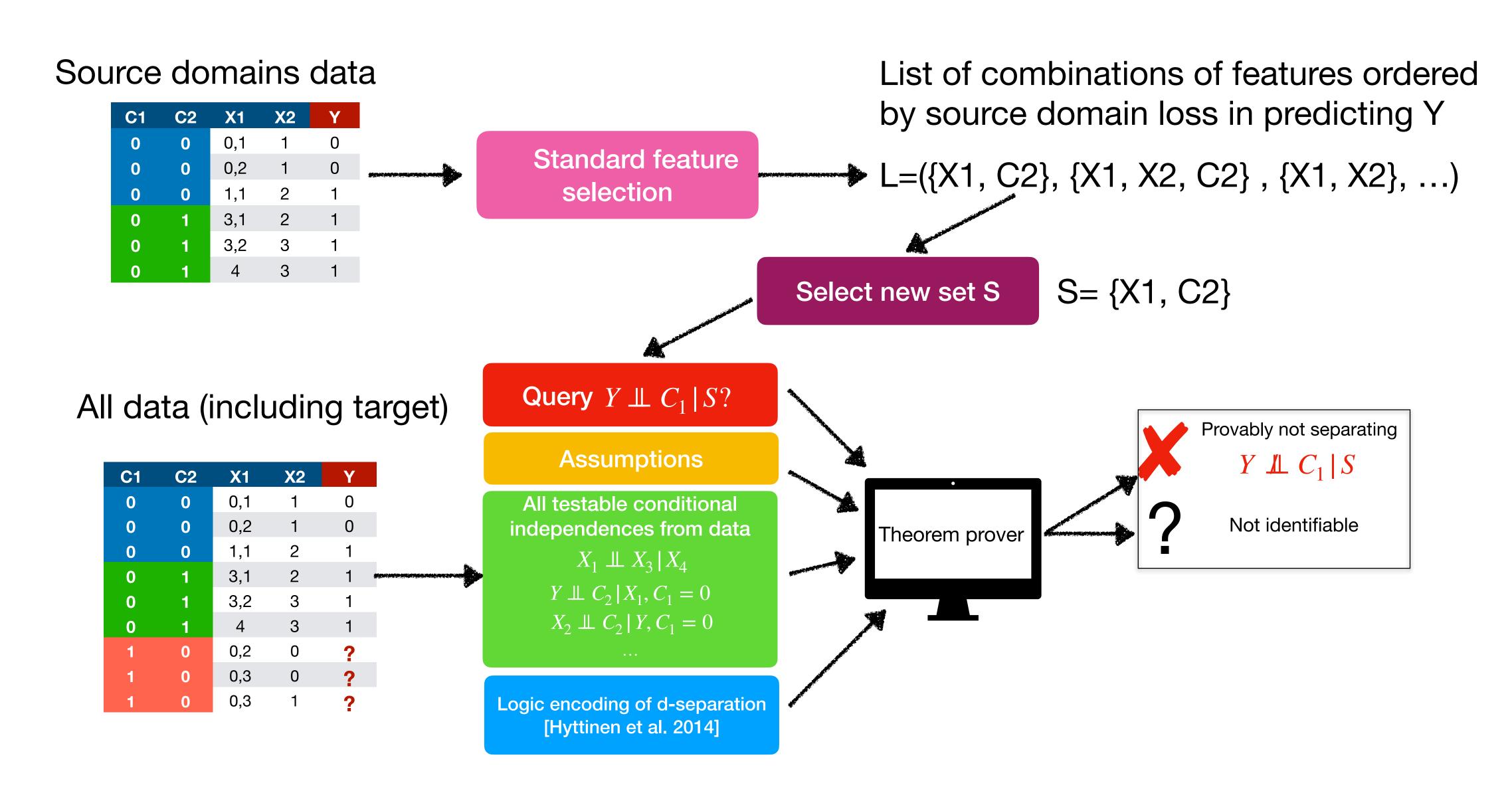


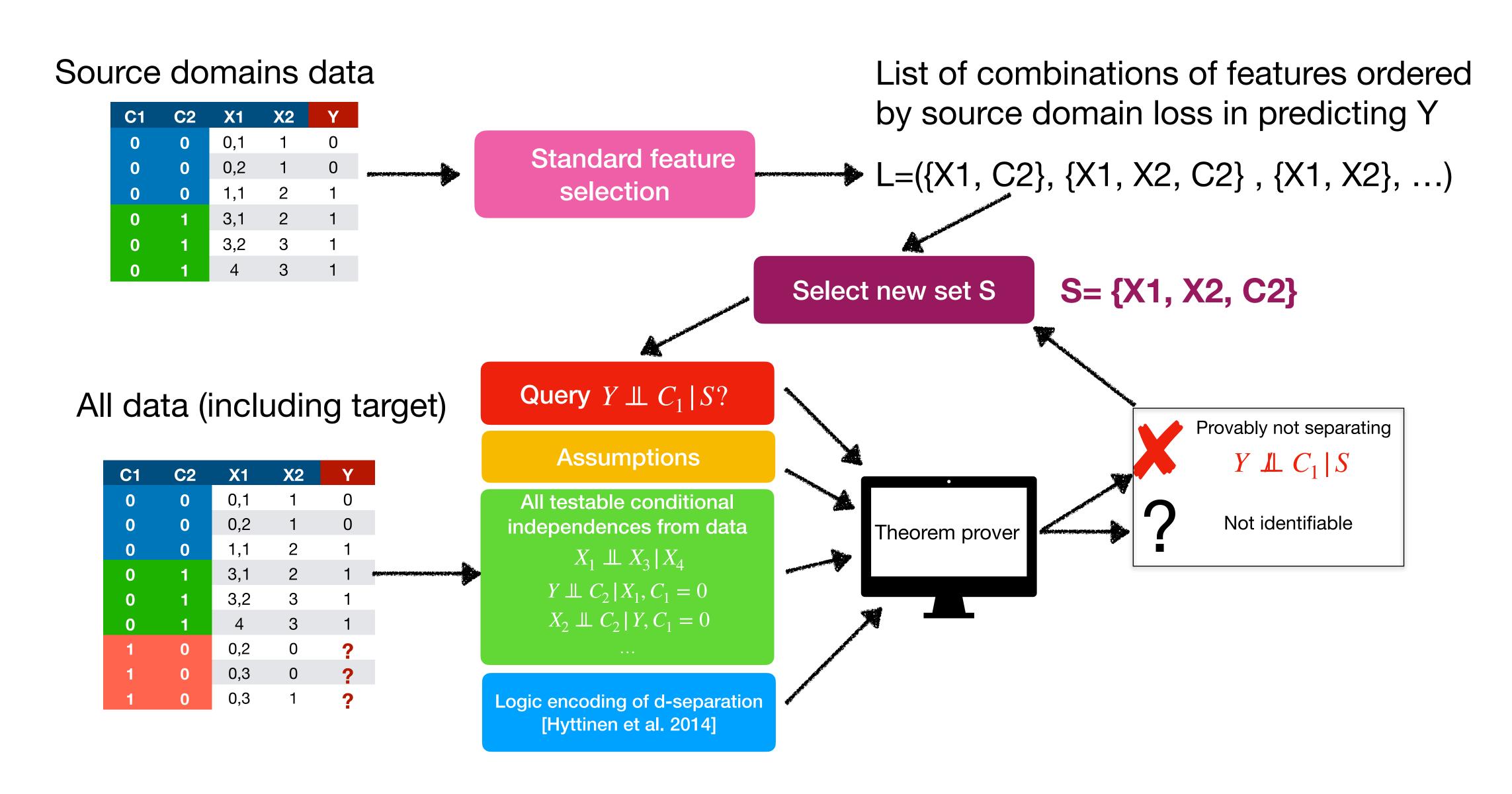
Logic encoding of d-separation [Hyttinen et al. 2014]

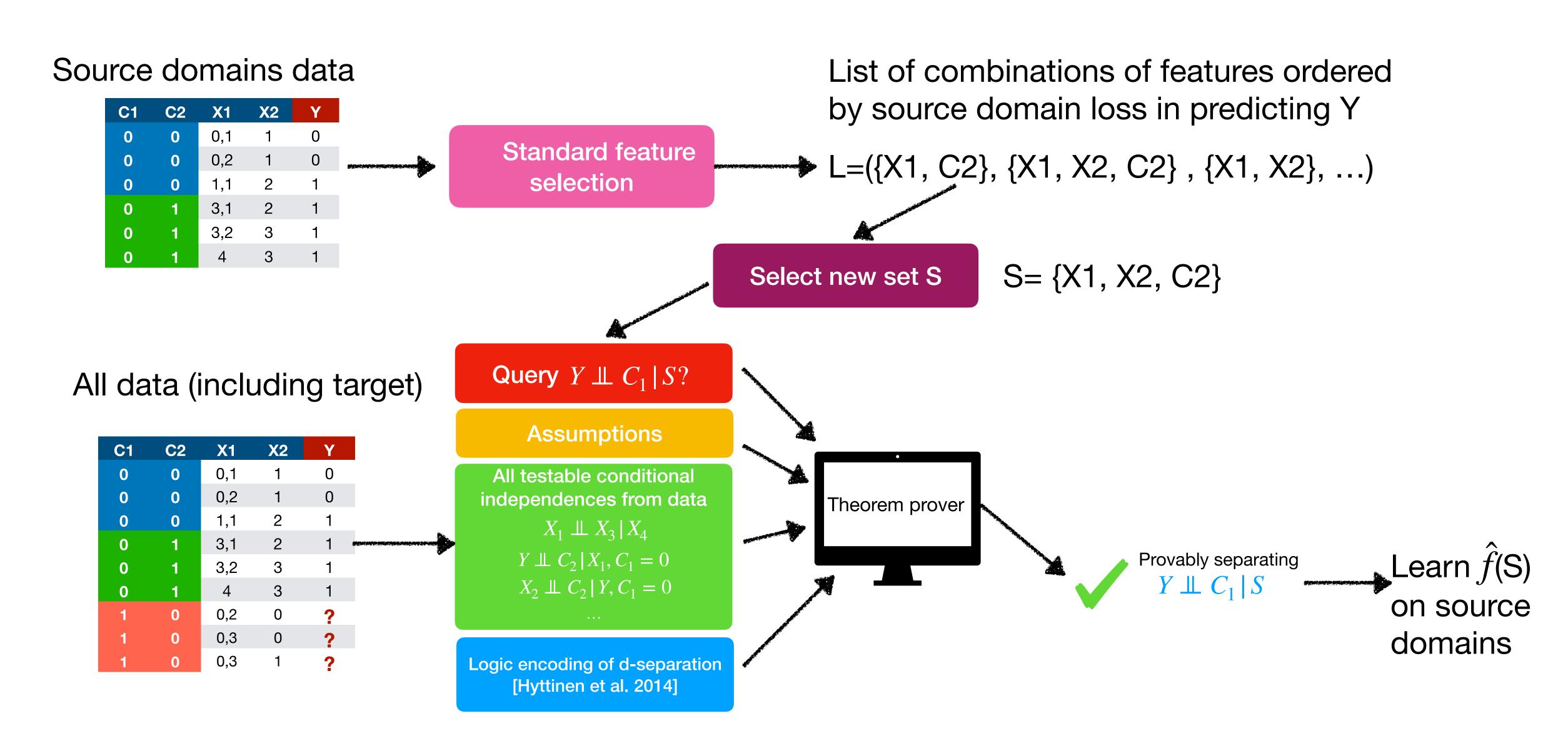


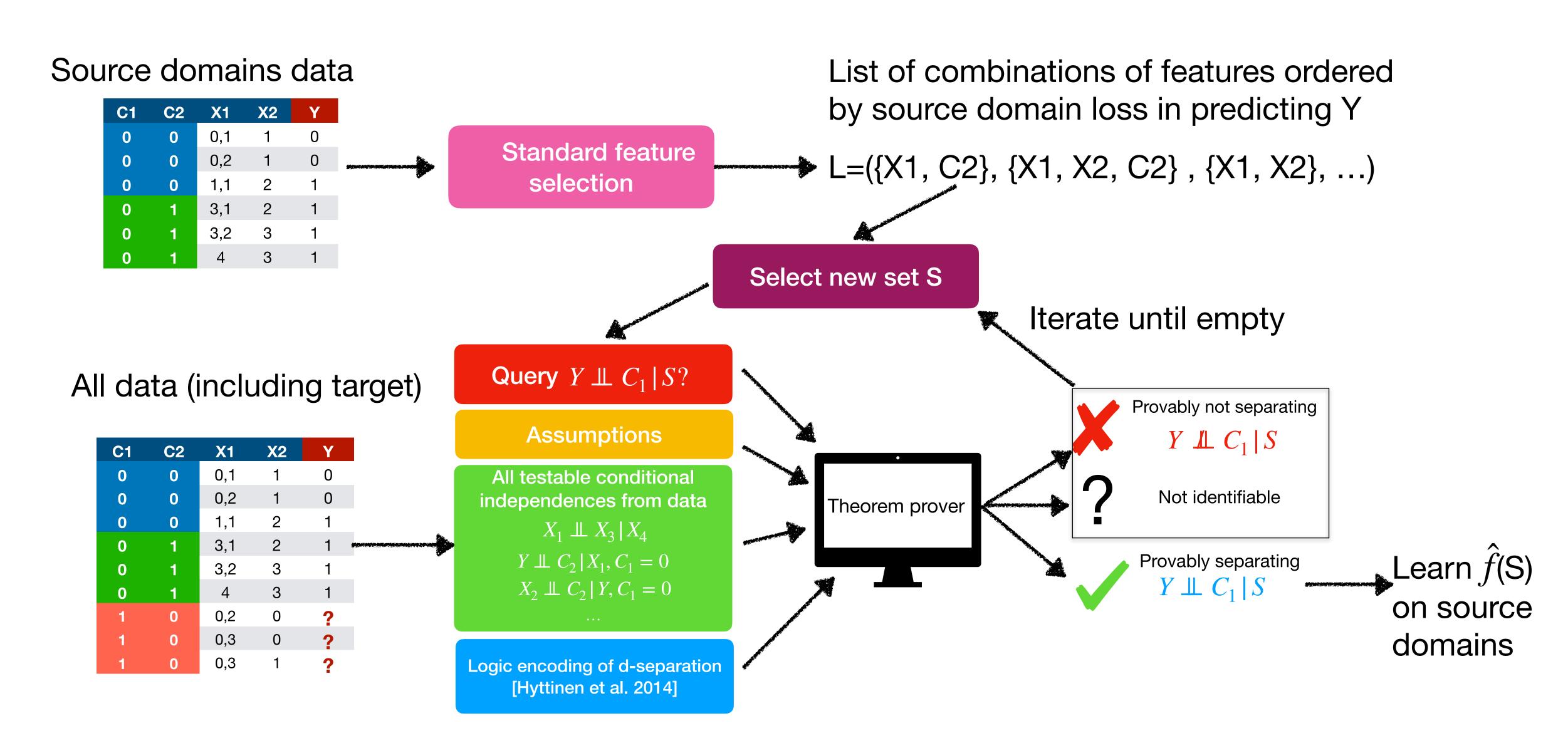


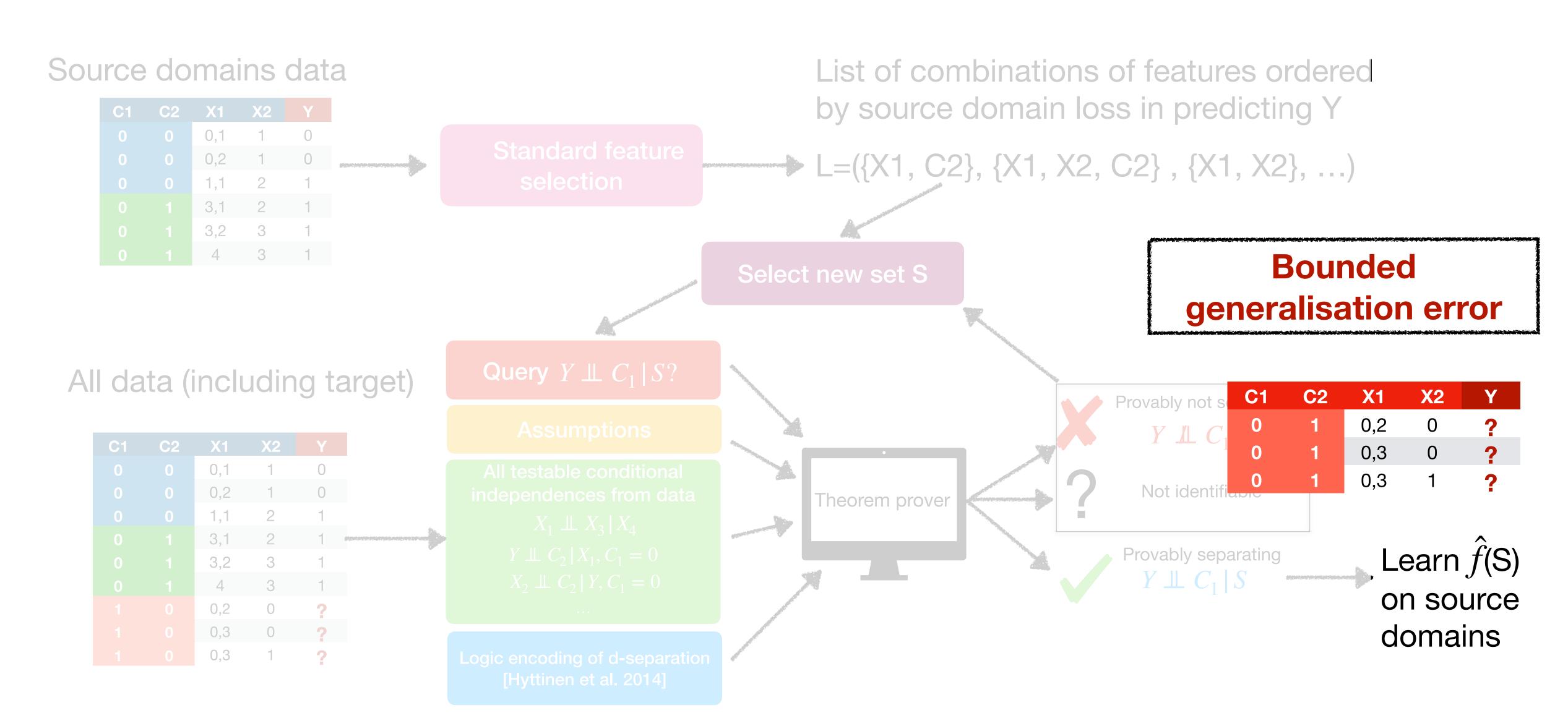












Desiderata for a causality inspired domain adaptation method

Thanks to Joint Causal Inference [Mooii et al 2020]

- Allow for latent confounders
- Avoid parametric assumptions, allow for heterogeneous effects across domains
- Instead of modeling changes between each domain, distinguish the change between the mixture of sources and the target
- Avoid common assumption that if Y T(X) is invariant across multiple source domains, then Y T(X) is invariant also in the target domain
- Only search for invariant features with respect to current target task

Desiderata for a causality inspired domain adaptation method

- X, Y and changes can be represented by an unknown causal graph
 No need to find causal graph or
- Allow for latent coequivalence class, we only care about conditional independences/d-separations
- Avoid parametric assumptions, allow for heterogeneous effects across domains
- Instead of modeling changes between each domain, distinguish the change between the mixture of sources and the target
- Avoid common assumption that if Y T(X) is invariant across multiple source domains, then Y T(X) is invariant also in the target domain
 - Only search for invariant features with respect to current target task

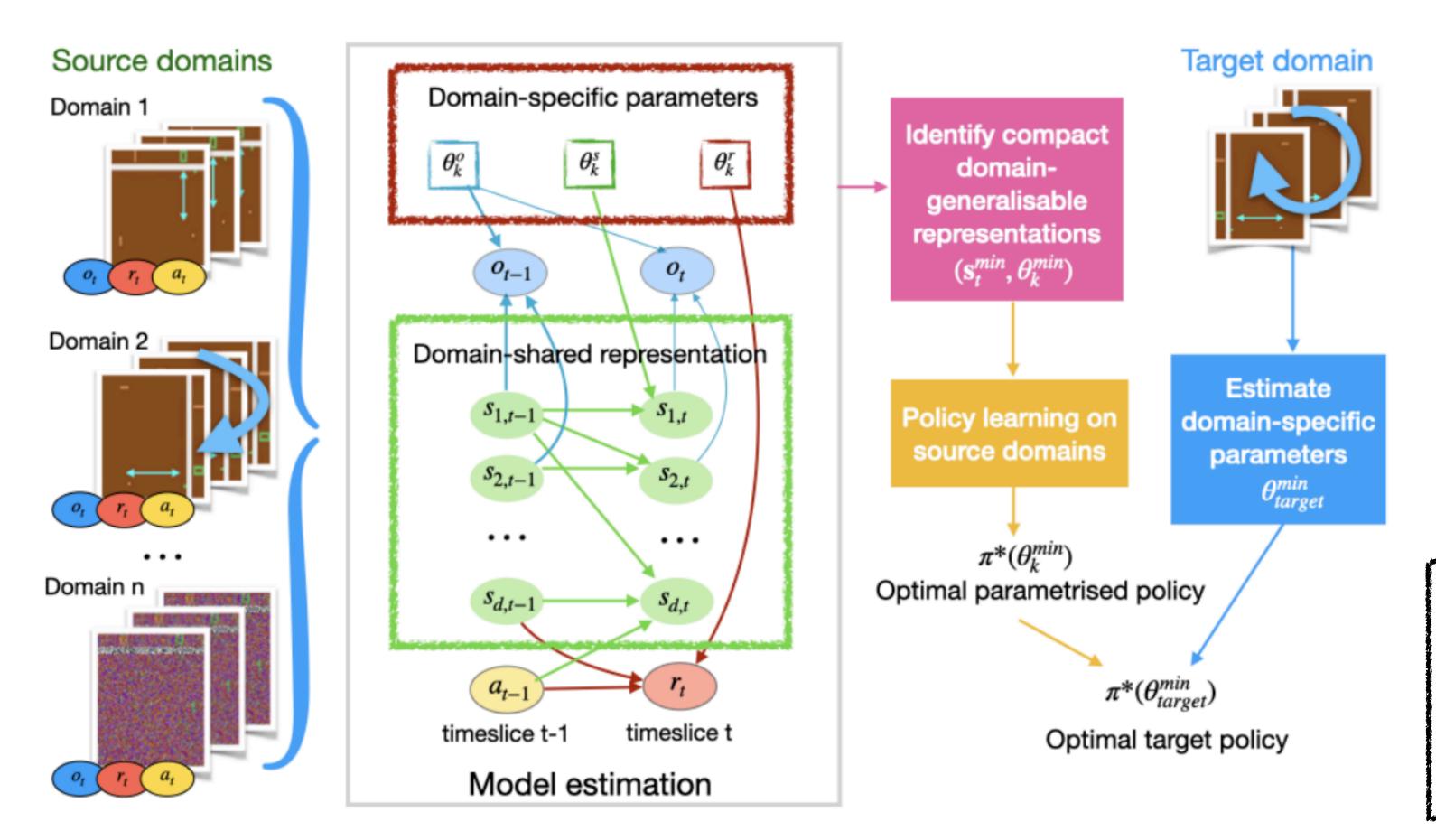
Limitations and future work

- Potentially too conservative: Separating sets may exist that are not provably separating
 - Extension: can we use active learning/intervention design to decide most informative interventions?
- Scalability: using (error-correcting) logic-based encoding with all CI tests as input scales to tens of vars (including context variables)
 - Extension: use approximate algorithms, combine with low dim representations
- Can we apply this to multi-task RL (e.g. in factored MDPs)?

AdaRL: What, Where, and How to Adapt in Transfer RL

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang

ICLR 2022



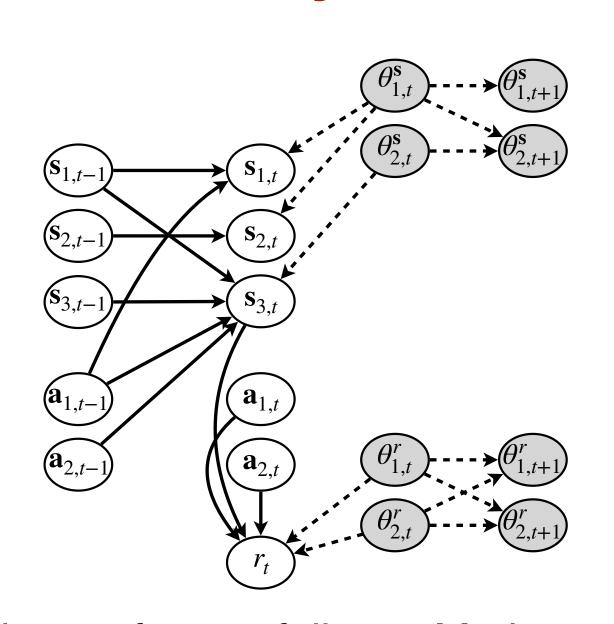
Simplifying assumption: no new edges in target domain

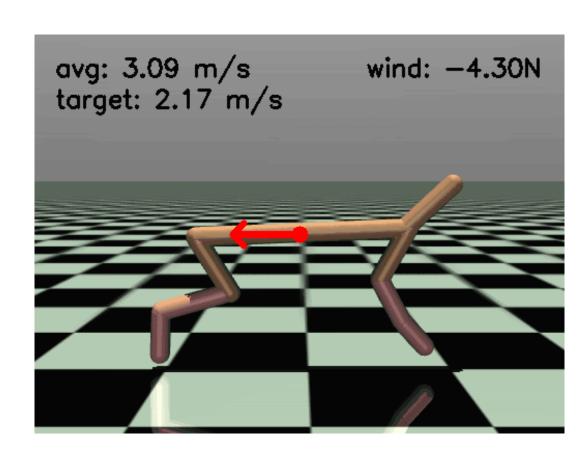
FansRL: Factored Adaptation for Non-Stationary Reinforcement Learning

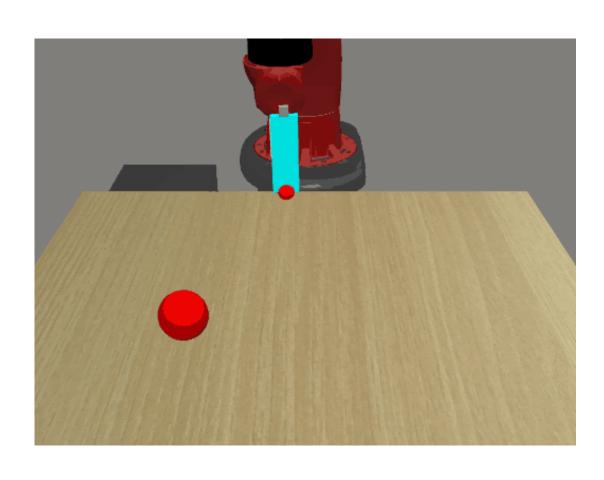
Fan Feng, Biwei Huang, Kun Zhang, Sara Magliacane

NeurlPS 2022

 The latent change factors are not constant anymore and they model nonstationarity







Change factors follow a Markov process:

Non-stationary environments (wind changes)

Non-stationary rewards (target changes)

- Discrete/abrupt changes
- Continuous/smooth changes

Conclusions

- D-separation [Pearl 1988] is a principled way to reason about invariances and distribution shift, allowing us to avoid common mistakes
 - Not a new observation, known since [Schoelkopf et al 2012, Zhang et al. 2013]
 - This is true even with:
 - Unknown causal graphs, Missing data/zero-shot settings
- Often we do not need to reconstruct the causal graph, we only need to infer missing conditional independences
- In domain adaptation, in general we cannot assume that what works in the source domains will work in the target

Conclusions

- D-separation [Pearl 1988] is a principled way to reason about invariances and distribution shift, allowing us to avoid common mistakes
 - Not a new observation, known since [Schoelkopf et al 2012, Zhang et al. 2013]
 - This is true even with:
 - Unknown causal graphs, Missing data/zero-shot settings
- Often we do not need to reconstruct the causal graph, we only need to infer missing conditional independences
- In domain adaptation, in general we cannot assume that what works in the source domains will work in the target

Thanks! Questions?

(joint work with Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris Mooij, Biwei Huang, Fan Feng, Chaochao Lu and Kun Zhang)